Light-cone string diagrams have been used to reproduce the orbifold Euler characteristic of moduli spaces of punctured Riemann surfaces at low genus and with few punctures. Nakamura studied the meromorphic differential introduced by Giddings and Wolpert to characterise light-cone diagrams and introduced a class of graphs related to this differential. These Nakamura graphs were used to parametrise the cells in a light-cone cell decomposition of moduli space. We develop links between Nakamura graphs and realisations of the worldsheet as branched covers. This leads to a development of the combinatorics of Nakamura graphs in terms of permutation tuples. For certain classes of cells, including those of top dimension, there is a simple relation to Belyi maps, which allows us to use results from Hermitian and complex matrix models to give analytic formulae for the counting of cells at arbitrarily high genus. For the most general cells, we develop a new equivalence relation on Hurwitz classes which organises the cells and allows efficient enumeration of Nakamura graphs using the group theory software GAP.Comment: 52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published versio
The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of su(2), which can be evaluated in terms of 3j and 6j symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large N expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes.
Large N factorization ensures that, for low-dimension gauge-invariant operators in the half-BPS sector of N = 4 SYM, products of holomorphic traces have vanishing correlators with single anti-holomorphic traces. This vanishing is necessary to consistently map trace operators in the CFT 4 to a Fock space of graviton oscillations in the dual AdS 5 . We investigate the regimes at which the CFT correlators do not vanish but become of order one in the large N limit, which we call a factorization threshold. Quite generally, we find the threshold to be when the product of the two holomorphic operator dimensions is of order N log N . Our analysis considers extremal and non-extremal correlators and correlators in states dual to LLM backgrounds, and we observe intriguing similarities between the the energy-dependent running coupling of non-abelian gauge theories and our threshold equations. Finally, we discuss some interpretations of the threshold within the bulk AdS spacetime.
The moduli space of Riemann surfaces with at least two punctures can be decomposed into a cell complex by using a particular family of ribbon graphs called Nakamura graphs. We distinguish the moduli space with all punctures labelled from that with a single labelled puncture. In both cases, we describe a cell decomposition where the cells are parametrised by graphs or equivalence classes of finite sequences (tuples) of permutations. Each cell is a convex polytope defined by a system of linear equations and inequalities relating light-cone string parameters, quotiented by the automorphism group of the graph. We give explicit examples of the cell decomposition at low genus with few punctures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.