Organic–inorganic halide perovskite single crystals possess many outstanding properties conducive for photovoltaic and optoelectronic applications. However, a clear photophysics picture is still elusive, particularly, their surface and bulk photophysics are inexorably convoluted by the spectral absorbance, defects, coexisting photoexcited species, etc. In this work, an all‐optical study is presented that clearly distinguishes the surface kinetics from those of the bulk in the representative methylammonium‐lead bromide (MAPbBr3) and ‐lead iodide (MAPbI3) single crystals. It is found that the bulk recombination lifetime of the MAPbBr3 single crystal is shortened significantly by approximately one to two orders (i.e., from ≈34 to ≈1 ns) at the surface with a surface recombination velocity of around 6.7 × 103 cm s−1. The surface trap density is estimated to be around 6.0 × 1017 cm−3, which is two orders larger than that of the bulk (5.8 × 1015 cm−3). Correspondingly, the diffusion length of the surface excited species is ≈130–160 nm, which is considerably reduced compared to the bulk value of ≈2.6–4.3 μm. Furthermore, the surface region has a wider bandgap that possibly arises from the strong lattice deformation. The findings provide new insights into the intrinsic photophysics essential for single crystal perovskite photovoltaics and optoelectronic devices.
Low-temperature solution-processed organic-inorganic halide perovskite CH3NH3PbI3 has demonstrated great potential for photovoltaics and light-emitting devices. Recent discoveries of long ambipolar carrier diffusion lengths and the prediction of the Rashba effect in CH3NH3PbI3, that possesses large spin-orbit coupling, also point to a novel semiconductor system with highly promising properties for spin-based applications. Through circular pump-probe measurements, we demonstrate that highly polarized electrons of total angular momentum (J) with an initial degree of polarization Pini ∼90% (i.e., -30% degree of electron spin polarization) can be photogenerated in perovskites. Time-resolved Faraday rotation measurements reveal photoinduced Faraday rotation as large as 10°/μm at 200 K (at wavelength λ = 750 nm) from an ultrathin 70 nm film. These spin polarized carrier populations generated within the polycrystalline perovskite films, relax via intraband carrier spin-flip through the Elliot-Yafet mechanism. Through a simple two-level model, we elucidate the electron spin relaxation lifetime to be ∼7 ps and that of the hole is ∼1 ps. Our work highlights the potential of CH3NH3PbI3 as a new candidate for ultrafast spin switches in spintronics applications.
Halide perovskites possess enormous potential for various optoelectronic applications. Presently, a clear understanding of the interplay between the lattice and electronic effects is still elusive. Specifically, the weakly absorbing tail states and dual emission from perovskites are not satisfactorily described by existing theories based on the Urbach tail and reabsorption effect. Herein, through temperature-dependent and time-resolved spectroscopy on metal halide perovskite single crystals with organic or inorganic A-site cations, we confirm the existence of indirect tail states below the direct transition edge to arise from a dynamical Rashba splitting effect, caused by the PbBr6 octahedral thermal polar distortions at elevated temperatures. This dynamic effect is distinct from the static Rashba splitting effect, caused by non-spherical A-site cations or surface induced lattice distortions. Our findings shed fresh perspectives on the electronic-lattice relations paramount for the design and optimization of emergent perovskites, revealing broad implications for light harvesting/photo-detection and light emission/lasing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.