IBM Research undertook a challenge to build a computer system that could compete at the human champion level in real time on the American TV Quiz show, Jeopardy! The extent of the challenge includes fielding a real-time automatic contestant on the show, not merely a laboratory exercise. The Jeopardy! Challenge helped us address requirements that led to the design of the DeepQA architecture and the implementation of Watson. After 3 years of intense research and development by a core team of about 20 researches, Watson is performing at human expert-levels in terms of precision, confidence and speed at the Jeopardy! Quiz show. Our results strongly suggest that DeepQA is an effective and extensible architecture that may be used as a foundation for combining, deploying, evaluating and advancing a wide range of algorithmic techniques to rapidly advance the field of QA.
Contrary to the proinflammatory role of mast cells in allergic disorders, the results obtained in this study establish that mast cells are essential in CD4+CD25+Foxp3+ regulatory T (T(Reg))-cell-dependent peripheral tolerance. Here we confirm that tolerant allografts, which are sustained owing to the immunosuppressive effects of T(Reg) cells, acquire a unique genetic signature dominated by the expression of mast-cell-gene products. We also show that mast cells are crucial for allograft tolerance, through the inability to induce tolerance in mast-cell-deficient mice. High levels of interleukin (IL)-9--a mast cell growth and activation factor--are produced by activated T(Reg) cells, and IL-9 production seems important in mast cell recruitment to, and activation in, tolerant tissue. Our data indicate that IL-9 represents the functional link through which activated T(Reg) cells recruit and activate mast cells to mediate regional immune suppression, because neutralization of IL-9 greatly accelerates allograft rejection in tolerant mice. Finally, immunohistochemical analysis clearly demonstrates the existence of this novel T(Reg)-IL-9-mast cell relationship within tolerant allografts.
CD4+CD25+ regulatory T cells (Treg) are potent immunosuppressive cells that are pivotal in the regulation of peripheral tolerance. In this report, we identify granzyme B (GZ-B) as one of the key components of Treg-mediated suppression. Induction of regulatory activity is correlated with the up-regulation of GZ-B expression. Proof of a functional involvement of GZ-B in contact-mediated suppression by Treg is shown by the reduced ability of Treg from GZ-B−/− mice to suppress as efficiently as Treg from WT mice. GZ-B-mediated suppression is perforin independent, because suppression by Treg from perforin−/− and WT is indistinguishable. Additionally, suppression mediated by Treg appears to be mediated, in part, by the induction of apoptosis in the CD4+CD25− effector cell. In summary, GZ-B is one of the key mechanisms through which CD4+CD25+ Treg induce cell contact-mediated suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.