The relative importance of ecology and evolution as factors determining species richness and composition of the helminth communities of fish is a matter of current debate. Theoretical studies use host-parasite lists, but these do not include studies on a temporal or spatial scale. Local environmental conditions and host biological characteristics are shown to influence helminth species richness and composition in four fish species (Eugerres plumieri, Hexanematichthys assimilis, Oligoplites saurus, and Scomberomorus maculatus) in Chetumal Bay, Mexico. With the exception of H. assimilis, the helminth communities had not been previously studied and possible associations between environmental and host biological characteristics as factors determining helminth species richness and composition using redundancy analysis (RDA) are described. Thirty-four helminth species are identified, with the highest number of species (19 total (mean = 6.3 +/- 2.1)) and the lowest (9 (4.0 +/- 1.0)) occurring in H. assimilis and S. maculatus, respectively. The larval nematodes Contracaecum sp. and Pseudoterranova sp. were not only the helminth species shared by all four host species but also were the most prevalent and abundant. Statistical associations between helminth community parameters and local ecological variables such as host habitat use, feeding habits, mobility, and time of residence in coastal lagoons are identified. Phylogeny is important because it clearly separates all four host species by their specialist parasites, although specific habitat and feeding habits also significantly influence the differentiation between the four fish species.
A widely accepted biodiversity crisis in the tropics has been recently challenged by claims that secondary forests will gradually restore biodiversity losses. This prediction was examined for the herpetofauna in Quintana Roo, Mexico. Quantitative sampling (108 transects) of reptiles was undertaken monthly (January-September 2004) along a vegetation gradient covering induced grasslands, and regrowth and primary rain forests. A total of 35 species was found, 14 being present in and five showing dependence on mature forests. Lizards contributed > 90 per cent of the individuals observed. Reptile abundance and snake species richness was highest in primary forests, even though the lower abundance and richness did not differ between regrowth forest and induced grasslands. Multivariate ordinations and ANOSIM tests displayed clear differences in assemblage structure among vegetation types, mainly caused by contrasting abundances of lizard species having distinctive arboreal or terrestrial habits. There was no evidence that snake assemblages differed between secondary forests and induced grasslands. Microhabitat availability had a key role in shaping species composition through the vegetation gradient. Our results dismiss the hypothesis that secondary forests can act as reservoirs of primary forest reptile diversity on the basis that many taxa depend largely on habitat quality and have specialized life-history traits, and that biological succession does not guarantee the recovery of assemblage complexity.
Three gonad-infecting species of Philometra Costa, 1845 were, for the first time, recorded from perciform fishes from estuarine and marine waters in South Carolina and Georgia, USA: Philometra charlestonensis sp. nov. from the scamp Mycteroperca phenax (Jordan et Swain) (Serranidae), P. saltatrix Ramachandran, 1973 from the bluefish Pomatomus saltatrix (Linnaeus) (Pomatomidae), and Philometra sp. from the Atlantic croaker Micropogonias undulatus (Linnaeus) (Sciaenidae). The new species is characterized mainly by males (body length 2.65-3.14 mm) with equally long, needle-like spicules (length 132-141 µm) and the gubernaculum (81-93 µm) bearing dorsal transverse lamella-like structures on its distal portion, the body length of gravid females (168-247 mm), the presence of a well-developed anterior bulbous inflation on the female oesophagus, and by the length of the first-stage larvae (544-597 µm). A key to gonad-infecting species of Philometra parasitizing marine and brackish-water fishes is provided.
The cyclopoid copepod Neoergasilus japonicus ( Harada, 1930 ) is recorded from three endangered or threatened fish species from southeast Mexico: the tailbar cichlid Vieja hartwegi (Taylor and Miller, 1980); the Angostura cichlid V. breidohri (Werner and Stawikowski, 1987); and the sieve cichlid C. grammodes (Taylor and Miller, 1980). This ectoparasitic copepod is considered, together with most other members of Neoergasilus, an Eastern Asian form. N. japonicus is one of the most widespread parasitic Asian copepods, as it has rapidly invaded Europe and North America, including Mexico. We estimated the prevalence, mean abundance, and intensity of infection of N. japonicus in these cichlid teleosts; our data agree with previous works stating the high prevalence of this ectoparasite. This copepod has a wide range of hosts among freshwater fish taxa, but this is only the second published report from cichlids in the Neotropical region. The three cichlids surveyed, V. hartwegi, V. breidohri, and C. grammodes, are new hosts of this copepod. Its occurrence in Mexico is attributed to different events of introduction by human agency. This is the southernmost record of N. japonicus in continental America. It is a matter of concern that this copepod is parasitizing endangered or threatened endemic cichlids in the Neotropical region. Because its high infective efficiency and ability to shift hosts, this Asian parasite is expected to spread farther southwards into Central and South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.