Objective. Redox imbalance contributes to bone fragility. We have evaluated the in vivo role of nuclear factor erythroid derived 2-related factor-2 (Nrf2), an important regulator of cellular responses to oxidative stress, in bone metabolism using a model of postmenopausal osteoporosis. Methods. Ovariectomy was performed in both wild-type and mice deficient in Nrf2 (Nrf2−/−). Bone microarchitecture was analyzed by μCT. Serum markers of bone metabolism were also measured. Reactive oxygen species production was determined using dihydrorhodamine 123. Results. Sham-operated or ovariectomized Nrf2−/− mice exhibit a loss in trabecular bone mineral density in femur, accompanied by a reduction in cortical area in vertebrae. Nrf2 deficiency tended to increase osteoblastic markers and significantly enhanced osteoclastic markers in sham-operated animals indicating an increased bone turnover with a main effect on bone resorption. We have also shown an increased production of oxidative stress in bone marrow-derived cells from sham-operated or ovariectomized Nrf2−/− mice and a higher responsiveness of bone marrow-derived cells to osteoclastogenic stimuli in vitro. Conclusion. We have demonstrated in vivo a key role of Nrf2 in the maintenance of bone microarchitecture.
BackgroundOsteoarthritis is thought to be the most prevalent chronic and disabling joint disease in animals and humans and its treatment is a major orthopaedic challenge because there is no ideal drug treatment to preserve joint structure and function, as well as to ameliorate the symptomatology of the disease. The aim of the present study was to assess, using histology, histomorphometry and micro-CT, the effects of the treatment with several drugs of the SYSADOA group and a bisphosphonate in a model of early osteoarthritis, comparing all the results obtained.MethodsOsteoarthritis was surgically induced by anterior cruciate ligament transection and partial meniscectomy on one knee of 56 rabbits; treatment was started three weeks after surgery and lasted 8 weeks; at the end of this period, the animals were sacrificed. Animals were divided into seven groups (8 animals each), one for each regimen of treatment (glucosamine sulfate, chondroitin sulfate, hyaluronic acid, diacerein, risedronate and a combination of risedronate and glucosamine) and one for the control (placebo-treated) group. Following sacrifice, femoral osteochondral cylinders and synovial membrane samples were obtained for their evaluation by qualitative and quantitative histology and micro-CT.ResultsThe model induced osteoarthritic changes in the knee joints and none of the treatments showed a significantly better efficacy over the others. Regarding cartilage thickness and volume, all the treatments achieved scores halfway between control groups, without statistical differences. Regarding the synovial membrane, diacerein and risedronate showed the best anti-inflammatory profile, whereas glucosamine and chondroitin did not present any effect standing the hyaluronic acid results between the others. Regarding the subchondral bone, there were no differences in thickness or volume, but risedronate, diacerein and hyaluronic acid seemed to have considerably modified the orientation of the trabecular lattice.ConclusionsOut of the different drugs evaluated in the study for OA treatment, diacerein and risedronate showed, in all the parameters measured, a better profile of effectiveness; hyaluronic acid ameliorated cartilage swelling and promoted bone formation, but with a poor synovial effect; and finally, chondroitin and glucosamine sulfate prevented cartilage swelling in a similar way to the others, but had no effect on cartilage surface, synovial membrane or subchondral bone.
BackgroundThe osteoarthritis (OA) treatment in humans and in animals is a major orthopaedic challenge because there is not an ideal drug for preserving the joint structure and function. The aim of this study was to assess the effects of the treatment with oral glucosamine and risedronate alone or in combination on articular cartilage, synovial membrane and subchondral bone in an experimental rabbit model of OA. Osteoarthritis was surgically induced on one knee of 32 New Zealand White rabbits using the contralateral as healthy controls. Three weeks later treatments were started and lasted 8 weeks. Animal were divided in four groups of oral treatment: the first group received only saline, the second 21.5 mg/kg/day of glucosamine sulfate, the third 0.07 mg/kg/day of risedronate; and the fourth group both drugs simultaneously at the same dosages. Following sacrifice femurs were removed and osteochondral cylinders and synovial membrane were obtained for its histological and micro-CT evaluation.ResultsSample analysis revealed that the model induced osteoarthritic changes in operated knees. OA placebo group showed a significant increase in cartilage thickness respect to the control and inflammatory changes in synovial membrane; whereas subchondral bone structure and volumetric bone mineral density remained unchanged. All the treated animals showed an improvement of the cartilage swelling independent of the drug used. Treatment with glucosamine alone seemed to have no effect in the progression of cartilage pathology while risedronate treatment had better results in superficial fibrillation and in resolving the inflammatory changes of the tissues, as well as modifying the orientation of trabecular lattice. The combination of both compounds seemed to have additive effects showing better results than those treated with only one drug.ConclusionsThe results of this animal study suggested that glucosamine sulfate and risedronate treatment alone or in combination may be able to stop cartilage swelling. The risedronate treatment could partially stop the fibrillation and the inflammation of synovial membrane as well as modify the orientation of trabeculae in healthy and in osteoarthritic knees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.