Intensive renal support in critically ill patients with acute kidney injury did not decrease mortality, improve recovery of kidney function, or reduce the rate of nonrenal organ failure as compared with less-intensive therapy involving a defined dose of intermittent hemodialysis three times per week and continuous renal-replacement therapy at 20 ml per kilogram per hour. (ClinicalTrials.gov number, NCT00076219.)
Progressive renal interstitial fibrosis and tubular atrophy represent the final injury pathway for all commonly encountered forms of renal disease that lead to end-stage renal failure. It has been recently recognized that myofibroblastic cells are the major contributors to the deposition of interstitial collagens. While there are several potential cellular sources of myofibroblasts, attention has focused on the transformation of the organized tubular epithelium to the myofibroblastic phenotype, a process potently driven both in vitro and in vivo by transforming growth factor-beta1 (TGF-beta1). Integrity of the underlying basal lamina provides cellular signals that maintain the epithelial phenotype, and disruption by discrete proteases could potentially initiate the transformation process. We demonstrate that TGF-beta1 coordinately stimulates the synthesis of a specific matrix metalloproteinase, gelatinase A (MMP-2), and its activator protease, MT1-MMP (MMP-14), and that active gelatinase A is absolutely required for epithelial-mesenchymal transformation induced by TGF-beta1. In addition, purified active gelatinase A alone is sufficient to induce epithelial-mesenchymal transformation in the absence of exogenous TGF-beta1. Gelatinase A may also mediate epithelial-mesenchymal transformation in a paracrine manner through the proteolytic generation of active TGF-beta1 peptide. MT1-MMP and gelatinase A were co-localized to sites of active epithelial-mesenchymal transformation and basal lamina disruption in the rat remnant kidney model of progressive renal fibrosis. These studies indicate that a discrete matrix metalloproteinase, gelatinase A, is capable of inducing the complex genetic rearrangements that characterize renal tubular epithelial-mesenchymal transformation.
Chronic kidney disease (CKD) and failure are problems of increasing importance. Regardless of the primary etiology, CKD is characterized by tubular atrophy, interstitial fibrosis, and glomerulosclerosis. It has been assumed that diminished matrix metalloproteinase (MMP) activity is responsible for the accumulation of the extracellular matrix (ECM) proteins and collagens that typify the fibrotic kidney. Here we demonstrate that transgenic renal proximal tubular epithelial expression of a specific enzyme, MMP-2, is sufficient to generate the entire spectrum of pathological and functional changes characteristic of human CKD. At the earliest point, MMP-2 leads to structural alterations in the tubular basement membrane, a process that triggers tubular epithelial-mesenchymal transition, with resultant tubular atrophy, fibrosis and renal failure. Inhibition of MMP-2, specifically in the early, prefibrotic stages of disease may offer an additional approach for treatment of these disabling disorders.
Discoidin domain receptor 2 (DDR2) is a tyrosine kinase receptor expressed in mesenchymal tissues, the ligand of which is fibrillar collagen. We have compared DDR2 signaling in skin fibroblasts derived from DDR2 ؊/؊ and DDR2 ؉/؊ mice. Proliferation of DDR2 ؊/؊ fibroblasts was significantly decreased compared with DDR2 ؉/؊ cells. DDR2 ؊/؊ fibroblasts exhibited markedly impaired capacity to migrate through a reconstituted basement membrane (Matrigel) in response to a chemotactic stimulus, which correlated with diminished matrix metalloproteinase-2 (MMP-2) activity by gelatin zymography and diminished MMP-2 transcription of a minimal MMP-2 promoter. In contrast, a lack of DDR2 had no effect on cell motility or ␣-smooth muscle actin or vinculin expression. Additionally, expression of type I collagen was greatly reduced in DDR2 ؊/؊ cells. Stable reconstitution of either wild-type DDR2 or constitutively active chimeric DDR2 in DDR2 ؊/؊ cells by retroviral infection restored cell proliferation, migration through a reconstituted basement membrane (Matrigel), and MMP-2 levels to those of DDR2 ؉/؊ fibroblasts. These data establish a role for DDR2 in critical events during wound repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.