Industrial IoT has special communication requirements, including high reliability, low latency, flexibility, and security. These are instinctively provided by the 5G mobile technology, making it a successful candidate for supporting Industrial IoT (IIoT) scenarios. The aim of this paper is to identify current research challenges and solutions in relation to 5G-enabled Industrial IoT, based on the initial requirements and promises of both domains. The methodology of the paper follows the steps of surveying state-of-the art, comparing results to identify further challenges, and drawing conclusions as lessons learned for each research domain. These areas include IIoT applications and their requirements; mobile edge cloud; back-end performance tuning; network function virtualization; and security, blockchains for IIoT, Artificial Intelligence support for 5G, and private campus networks. Beside surveying the current challenges and solutions, the paper aims to provide meaningful comparisons for each of these areas (in relation to 5G-enabled IIoT) to draw conclusions on current research gaps.
Envisioned 5G applications and services, such as Tactile Internet, Industry 4.0 use-cases, remote control of drone swarms, pose serious challenges to the underlying networks and cloud platforms. On the one hand, evolved cloud infrastructures provide the IT basis for future applications. On the other hand, networking is in the middle of a momentous revolution and important changes are mainly driven by Network Function Virtualization (NFV) and Software Defined Networking (SDN). A diverse set of cloud and network resources, controlled by different technologies and owned by cooperating or competing providers, should be coordinated and orchestrated in a novel way in order to enable future applications and fulfill application level requirements. In this paper, we propose a novel cross domain orchestration system which provides wholesale XaaS (Anything as a Service) services over multiple administrative and technology domains. Our goal is threefold. First, we design a novel orchestration system exploiting a powerful information model and propose a versatile embedding algorithm with advanced capabilities as a key enabler. The main features of the architecture include i) efficient and multipurpose service embedding algorithms which can be implemented based on graph models, ii) inherent multidomain support, iii) programmable aggregation of different resources, iv) information hiding together with flexible delegation of certain requirements enabling multi-operator use-cases, and v) support for legacy technologies. Second, we present our proof-of-concept prototype implementing the proposed system. Third, we establish a dedicated test environment spanning across multiple European sites encompassing sandbox environments from both operators and the academia in order to evaluate the operation of the system. Dedicated experiments confirm the feasibility and good scalability of the whole framework.
No abstract
Supporting end-to-end network slices and services across operators has become an important use case of study for 5G networks as can be seen by 5G use cases published in 3GPP, ETSI as well as NGMN. This paper presents the indepth architecture, implementation and experiment on a multidomain orchestration framework that is ab le to deploy such multi-operator service as well as monitor the service for SLA compliance. Our implemented architecture allows operators to abstract their sensitive details while exposing the relevant amount of information to support inter-operator slice creation. Our experiment shows that the implemented framework is capable of creating services across operators while fulfilling the respective service requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.