Envisioned 5G applications and services, such as Tactile Internet, Industry 4.0 use-cases, remote control of drone swarms, pose serious challenges to the underlying networks and cloud platforms. On the one hand, evolved cloud infrastructures provide the IT basis for future applications. On the other hand, networking is in the middle of a momentous revolution and important changes are mainly driven by Network Function Virtualization (NFV) and Software Defined Networking (SDN). A diverse set of cloud and network resources, controlled by different technologies and owned by cooperating or competing providers, should be coordinated and orchestrated in a novel way in order to enable future applications and fulfill application level requirements. In this paper, we propose a novel cross domain orchestration system which provides wholesale XaaS (Anything as a Service) services over multiple administrative and technology domains. Our goal is threefold. First, we design a novel orchestration system exploiting a powerful information model and propose a versatile embedding algorithm with advanced capabilities as a key enabler. The main features of the architecture include i) efficient and multipurpose service embedding algorithms which can be implemented based on graph models, ii) inherent multidomain support, iii) programmable aggregation of different resources, iv) information hiding together with flexible delegation of certain requirements enabling multi-operator use-cases, and v) support for legacy technologies. Second, we present our proof-of-concept prototype implementing the proposed system. Third, we establish a dedicated test environment spanning across multiple European sites encompassing sandbox environments from both operators and the academia in order to evaluate the operation of the system. Dedicated experiments confirm the feasibility and good scalability of the whole framework.
No abstract
Abstract-Next generation networks and applications have recently drawn the attention of many researchers in both academia and industry. The plethora of service orchestration, embedding and scheduling solutions being developed indicates that efficient resource utilization in the cloud and edge/fog architecture is of crucial importance in order to exploit the great economic potential of this infrastructure. In this paper we propose a novel service orchestration approach that aims for speed and quality in terms of service provisioning: our embedding algorithm instantly deploys end-to-end delay-constrained service graphs while regularly offloads the most burdened parts of the infrastructure applying a cost-aware VNF migration strategy. In this sense we propose a hybrid orchestration approach, which unites the advantages of online heuristic and offline optimizing service orchestration methods, with the goal of obtaining a system design that provides fast service placement decisions and efficient long-term operation. By an exhaustive evaluation of our orchestration system on core, cloud and edge network topologies, we show its benefits in efficiency and the collateral cost of migrations.
Software-Defined Networking (SDN) offers a new way to operate, manage, and deploy communication networks and to overcome many long-standing problems of legacy networking. However, widespread SDN adoption has not occurred yet due to the lack of a viable incremental deployment path and the relatively immature present state of SDN-capable devices on the market. While continuously evolving software switches may alleviate the operational issues of commercial hardware-based SDN offerings, namely lagging standards-compliance, performance regressions, and poor scaling, they fail to match the cost-efficiency and port density. In this paper, we propose HARMLESS, a new SDN switch design that seamlessly adds SDN capability to legacy network gear, by emulating the OpenFlow switch OS in a separate software switch component. This way, HARMLESS enables a quick and easy leap into SDN, combining the rapid innovation and upgrade cycles of software switches with the port density and cost-efficiency of hardware-based appliances into a fully dataplane-transparent and vendor-neutral solution. HARMLESS incurs an order of magnitude smaller initial expenditure for an SDN deployment than existing turnkey vendor SDN solutions Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.