We present a "nanoparticle-in-alloy" material approach with silicide and germanide fillers leading to a potential 5-fold increase in the thermoelectric figure of merit of SiGe alloys at room temperature and 2.5 times increase at 900 K. Strong reductions in computed thermal conductivity are obtained for 17 different types of silicide nanoparticles. We predict the existence of an optimal nanoparticle size that minimizes the nanocomposite's thermal conductivity. This thermal conductivity reduction is much stronger and strikingly less sensitive to nanoparticle size for an alloy matrix than for a single crystal one. At the same time, nanoparticles do not negatively affect the electronic conduction properties of the alloy. The proposed material can be monolithically integrated into Si technology, enabling an unprecedented potential for micro refrigeration on a chip. High figure-of-merit at high temperatures (ZT approximately 1.7 at 900 K) opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.