Many studies have presented computational models of musical structure, as an important aspect of musicological analysis. However, the use of grammar-based compressors to automatically recover such information is a relatively new and promising technique. We investigate their performance extensively using a collection of nearly 8000 scores, on tasks including error detection, classification, and segmentation, and compare this with a range of more traditional compressors. Further, we detail a novel method for locating transcription errors based on grammar compression. Despite its lack of domain knowledge, we conclude that grammar-based compression offers competitive performance when solving a variety of musicological tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.