Fossil dolphins belonging to the extinct family Kentriodontidae are small to medium‐sized toothed cetaceans, which probably include the ancestors of some living species. Kentriodontids are known from rocks of Late Oligocene to Late Miocene age in various parts of the world. Among kentriodontids, species in the subfamily Kentriodontinae (e.g. species of Kentriodon Kellogg, 1927) are the most ubiquitous and generalized; these are now known from latest Oligocene to earliest Miocene strata in New Zealand and Patagonia, and Middle Miocene deposits in Maryland, Virginia, California and Japan. The diversity, morphologies and distributions of Miocene species of Kentriodontinae seem to parallel those of the living species of mostly pelagic delphinids in the subfamily Delphininae, and the fossil group may have been an ecological or behavioral/functional counterpart of the latter. Kentriodontines are inferred to have been wide‐ranging neritic to pelagic animals that ate small fish and other nectonic organisms; they were probably active echolocators, and might have formed large schools. They are relatively common as fossils and, therefore, are potentially useful for intercontinental correlations of marine deposits.
The use of skeletal oxygen isotopic records for use in paleotemperature reconstruction has been hampered by the lack of independent evidence for ocean water oxygen isotopic composition. The δ18O record from homeothermic cetaceans has provided an independent estimate of ocean δ18O values represented by the Calvert and Choptank formations of Maryland. Fish teeth and bones (especially shark and ray teeth) were also collected from these sediments and provide the basis for paleotemperature estimates for represented time slices of the middle Miocene. Trends in δ18O values of the fish phosphate throughout the Calvert Formation are of opposite polarity to the trends from the cetacean bone phosphate. Paleotemperatures calculated using the cetacean proxies for ocean δ18O values sharpen the already present trend, indicating that ocean temperatures increased during episodes of greater glaciation and decreased during periods of lesser or no glaciation. When using modern average ocean values of 0‰ SMOW in the paleotemperature calculation, however, corrected paleotemperatures for the Choptank Formation do not alter the existing pattern of temperatures.
SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTIONEmphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.