The angular resolution of electron backscatter diffraction (EBSD) measurements can be significantly improved using an analysis based on determination of small shifts in features from one pattern to the next using cross-correlation functions. Using pattern shift measurements at many regions of the pattern, errors in the best fit strain and rotation tensors can be reduced. The authors show that elements of the strain tensor and small misorientations can be measured to ¡10 24 and ¡0 . 006u for rotations. We apply the technique to two quite different materials systems. First, we determine the elastic strain distribution near the interface in a cross-sectioned SiGe epilayer, Si substrate semiconductor heterostructure. The plane stress boundary conditions at the sample surface are used to separate every term in the strain tensor. Second, the applicability to structural materials is illustrated by determining the lattice curvature caused by dislocations within the plastic zone associated with the wake and tip of a fatigue crack in a Ni based superalloy. The lattice curvatures are used to calculate the geometrically necessary dislocation content in the plastic zone.
SummaryTen years ago electron backscatter diffraction (EBSD) became available to a wider group active in materials research. This paper highlights some of the more significant developments in camera technology and software developments that have arisen since then. The use of slow-scan charge couple device cameras for phase identification and rapid determination of orientation image micrographs is reviewed. The current limiting spatial resolution of the technique is shown to be less than 10 nm. A procedure for improving lattice spacing measurement by utilizing the full resolution of the camera is described with experimental measurements on silicon and nickel showing relative errors of plus/minus 3%. An investigation of partially recrystallized aluminium shows how the recrystallized fraction can be extracted with confidence but that the mapping of substructure in the highly deformed regions is questionable. Phase identification is described for complex cases in which the phase data tabulated in standard databases do not correspond to what is observed in the EBSD patterns. Phase mapping in a complex mineral in which chemical data and EBSD data are collected simultaneously is shown to be improved by recording both the chemical and the EBSD data into computer memory and proceeding with the phase discrimination and orientation measurement in off-line analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.