The lone CX3C chemokine, fractalkine (FK), is expressed in a membrane‐bound form on activated endothelial cells and mediates attachment and firm adhesion of T cells, monocytes and NK cells. We now show that FK is associated with dendritic cells (DC) in epidermis and lymphoid organs. In normal human skin, dual‐color fluorescence microscopy co‐localized FK expression with Langerhans cells expressing CD1a. In tonsil, FK‐positive DC expressed CD83, a marker for mature DC. Human and murine cultured DC up‐regulated FK mRNA expression with maturation. Furthermore, CD40 ligation, but not TNF‐α or lipopolysaccharide treatment, of activated, migratory DC that had migrated from skin explants resulted in a 2.5‐fold increase of surface expression of FK without significant alterations of expression of CD80, CD86, CD54 or MHC class II. Since FK mediates adhesion of T cells to activated endothelial cells, the increased expression of FK during DC maturation (and particularly by CD40 ligation) may play a role in the ability of T cells and mature DC to form conjugates and engage in cell‐cell communication.
Memory T cells (mTC) express multiple chemokine receptors (including CCR4 and CCR6) that may potentially be involved in their arrest on inflamed endothelia. Herein, we specifically addressed whether CCR6 is required for mTC to arrest on TNF-α-activated human dermal microvascular endothelial cells (HDMEC) in vitro under shear stress conditions. Recombinant liver and activation-regulated chemokine (LARC)/CCL20 (a CCR6 ligand) induced firm arrest of cutaneous lymphocyte Ag+ mTC in a flow chamber system using purified substrates. Strikingly, desensitization of CCR6 with LARC, but not thymus and activation-regulated chemokine/CCL17 or secondary lymphoid tissue chemokine/CCL21, caused a 50–75% decrease (p < 0.001) in arrest of mTC on HDMEC, which was indistinguishable from the reduction observed when total mTC were treated with pertussis toxin (p > 0.5). CCR6-depleted mTC also had a markedly reduced ability to arrest on HDMEC. Our results suggest that LARC production by activated endothelial cells and CCR6 expression by mTC may be critical components in the pertussis toxin-sensitive arrest of mTC on activated HDMEC.
Bromelain, a mixture of proteases derived from pineapple stem, has been reported to have therapeutic benefits in a variety of inflammatory diseases, including murine inflammatory bowel disease. The purpose of this work was to understand potential mechanisms for this anti-inflammatory activity. Exposure to bromelain in vitro has been shown to remove a number of cell surface molecules that are vital to leukocyte trafficking, including CD128a/CXCR1 and CD128b/CXCR2 that serve as receptors for the neutrophil chemoattractant IL-8 and its murine homologues. We hypothesized that specific proteolytic removal of CD128 molecules by bromelain would inhibit neutrophil migration to IL-8 and thus decrease acute responses to inflammatory stimuli. Using an in vitro chemotaxis assay, we demonstrated a 40% reduction in migration of bromelain-vs. sham-treated human neutrophils in response to rhIL-8. Migration to the bacterial peptide analog fMLP was unaffected, indicating that bromelain does not induce a global defect in leukocyte migration. In vivo bromelain treatment generated a 50 -85% reduction in neutrophil migration in 3 different murine models of leukocyte migration into the inflamed peritoneal cavity. Intravital microscopy demonstrated that although in vivo bromelain treatment transiently decreased leukocyte rolling, its primary long-term effect was abrogation of firm adhesion of leukocytes to blood vessels at the site of inflammation. These changes in adhesion were correlated with rapid re-expression of the bromelain-sensitive CD62L/L-selectin molecules that mediate rolling following in vivo bromelain treatment and minimal re-expression of CD128 over the time period studied. Taken together, these studies demonstrate that bromelain can effectively decrease neutrophil migration to sites of acute inflammation and support the specific removal of the CD128 chemokine receptor as a potential mechanism of action.
We recently reported the identification of a gene, TRF4 (for DNA topoisomerase related function), in a screen for mutations that are synthetically lethal with mutations in DNA topoisomerase I (top1). Here we describe the isolation of a second member of the TRF4 gene family, TRF5. Overexpression of TRF5 complements the inviability of top1 trf4 double mutants. The predicted Trf5 protein is 55% identical and 72% similar to Trf4p. As with Trf4p, a region of Trf5p is homologous to the catalytically dispensable N-terminus of Top1p. The TRF4/5 function is essential as trf4 trf5 double mutants are inviable. A trf4 (ts) trf5 double mutant is hypersensitive to the anti-microtubule agent thiabendazole at a semi-permissive temperature, suggesting that TRF4/5 function is required at the time of mitosis. Examination of nuclear morphology in a trf4 (ts) trf5 mutant at a restrictive temperature reveals the presence of many cells undergoing aberrant nuclear division, as well as many anucleate cells, demonstrating that the TRF4/5 function is required for proper mitosis. Database searches reveal the existence of probable Schizosaccharomyces pombe and human homologs of Trf4p, indicating that TRF4 is the canonical member of a gene family that is highly conserved evolutionarily.
Mast cells (MC) are anatomically located near nerves and blood vessels in skin and the gastrointestinal tract and tend to localize within certain cutaneous tumors such as neurofibromas. However, the molecular mechanisms by which MC home to these sites are not well characterized. Fractalkine (FK) is a membrane‐bound CX3C chemokine that displays constitutive expression in dendritic cells as well as in non‐hematopoietic tissues including mammalian brain. Here we show that FK is constitutively expressed by skin endothelial cells, dermal dendrocytes and cells within neurofibromas. By reverse transcription‐PCR, FK receptor, CX3CR1, is expressed by cultured murine bone marrow‐derived MC (BMMC) of both connective tissue and mucosal phenotypes. Non‐activated human dermal MC isolated from neonatal foreskin similarly demonstrated CX3CR1 expression. In chemotaxis assays, FK attracted MC with maximal migration occurring between 25 – 125 ng / ml. BMMC were not stimulated to release proinflammatory mediators in the presence of FK as measured by granule‐associated β‐hexosaminidase release. Thus, CX3CR1 is expressed by MC and effectively mediates chemotaxis without inducing degranulation. We propose that the constitutive expression of FK on certain cells in the skin may be a factor in the tissue‐specific homing of MC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.