The goal of this study was to initiate investigation of the genetics of bacterial poly-3-hydroxybutyrate (PHB) metabolism at the community level. We constructed metagenome libraries from activated sludge and soil microbial communities in the broad-host-range IncP cosmid pRK7813. Several unique clones were isolated from these libraries by functional heterologous complementation of a Sinorhizobium meliloti bdhA mutant, which is unable to grow on the PHB cycle intermediate D-3-hydroxybutyrate due to absence of the enzyme D-3-hydroxybutyrate dehydrogenase activity. Clones that conferred D-3-hydroxybutyrate utilization on Escherichia coli were also isolated. Although many of the S. meliloti bdhA mutant complementing clones restored D-3-hydroxybutyrate dehydrogenase activity to the mutant host, for some of the clones this activity was not detectable. This was also the case for almost all of the clones isolated in the E. coli selection. Further analysis was carried out on clones isolated in the S. meliloti complementation. Transposon mutagenesis to locate the complementing genes, followed by DNA sequence analysis of three of the genes, revealed coding sequences that were broadly divergent but lay within the diversity of known short-chain dehydrogenase/reductase encoding genes. In some cases, the amino acid sequence identity between pairs of deduced BdhA proteins was <35%, a level at which detection by nucleic acid hybridization based methods would probably not be successful.
Plant resistance mechanisms to insect herbivory can potentially be bred into crops as an important strategy for integrated pest management. Medicago truncatula ecotypes inoculated with the rhizobium Ensifer medicae (Sinorhizobium medica) WSM419 were screened for resistance to herbivory by caterpillars of the beet armyworm, Spodoptera exigua, through leaf and whole plant choice studies; TN1.11 and F83005.5 are identified as the least and most deterrent ecotypes, respectively. In response to caterpillar herbivory, both ecotypes mount a robust burst of plant defensive jasmonate phytohormones. Restriction of caterpillars to either of these ecotypes does not adversely affect pest performance. This argues for an antixenosis (deterrence) resistance mechanism associated with the F83005.5 ecotype. Unbiased metabolomic profiling identified strong ecotype-specific differences in metabolite profile, particularly in the content of oleanolic-derived saponins that may act as antifeedants. Compared to the more susceptible ecotype, F83005.5 has higher levels of oleanolic-type zanhic acid- and medicagenic acid-derived compounds. Together, these data support saponin-mediated deterrence as a resistance mechanism of the F83005.5 ecotype and implicates these compounds as potential antifeedants that could be used in agricultural sustainable pest management strategies.
A 10-year-old boy developed progressive dystonia and dementia. His symptoms had begun at age 2 1/2 years, and he had been unable to walk by 8 years. At age 10 he was severely dystonic, unable to use his hands to feed himself, and almost anarthric . He had dysphagia and urinary incontinence, and functioned at a 4-year-old level of mental development. The mean percentages of beta-hexosaminidase A measured in serum, leukocytes, and fibroblasts by the heat denaturation method, each on three separate assays, were 5.9, 9.8, and 13.0%, respectively. These values are higher than in Tay-Sachs disease but are similar to levels seen in late-onset or adult cases of GM2 gangliosidosis. This patient appears to represent a new phenotype of juvenile GM2 gangliosidosis having dystonia as the dominant symptom.
To isolate Sinorhizobium meliloti mutants deficient in malate dehydrogenase (MDH) activity, random transposon Tn5tac1 insertion mutants were screened for conditional lethal phenotypes on complex medium. Tn5tac1 has an outward-oriented isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter (Ptac). The insertion in strain Rm30049 was mapped to the mdh gene, which was found to lie directly upstream of the genes encoding succinyl-CoA synthetase (sucCD) and 2-oxoglutarate dehydrogenase (sucAB and lpdA). Rm30049 required IPTG for wild-type growth in complex media, and had a complex growth phenotype in minimal media with different carbon sources. The mdh:: Tn5tacl insertion eliminated MDH activity under all growth conditions, and activities of succinyl-CoA synthetase, 2-oxoglutarate dehydrogenase, and succinate dehydrogenase were affected by the addition of IPTG. Reverse-transcriptase polymerase chain reaction (RT-PCR) studies confirmed that expression from Ptac was induced by IPTG and leaky in its absence. Alfalfa plants inoculated with Rm30049 were chlorotic and stunted, with small white root nodules, and had shoot dry weight and percent-N content values similar to those of uninoculated plants. Cosmid clone pDS15 restored MDH activity to Rm30049, complemented both the mutant growth and symbiotic phenotypes, and was found to carry six complete (sdhB, mdh, sucCDAB) and two partial (IpdA, sdhA) tricarboxylic acid cycle genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.