CC-1065 is a unique antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of this drug are thought to be due to its ability to form a covalent adduct with DNA through N3 of adenine. Thermal treatment of CC-1065-DNA adducts leads to DNA strand breakage. We have shown that the CC-1065 structural modification of DNA that leads to DNA strand breakage is related to the primary alkylation site on DNA. The thermally induced DNA strand breakage occurs between the deoxyribose at the adenine covalent binding site and the phosphate on the 3' side. No residual modification of DNA is detected on the opposite strand around the CC-1065 lesion. Using the early promoter element of SV40 DNA as a target, we have examined the DNA sequence specificity of CC-1065. A consensus sequence analysis of CC-1065 binding sites on DNA reveals two distinct classes of sequences for which CC-1065 is highly specific, i.e., 5'PuNTTA and 5'AAAAA. The orientation of the DNA sequence specificity relative to the covalent binding site provides a basis for predicting the polarity of drug binding in the minor groove. Stereo drawings of the CC-1065-DNA adduct are proposed that are predictive of features of the CC-1065-DNA adduct elucidated in this investigation.
The nucleotide sequence of the human adenosine deaminase gene was determined. The gene was isolated in a series of overlapping lambda phage clones containing human germ line DNA. A total of 36,741 base pairs were sequenced, including 32,040 base pairs from the transcription initiation site to the polyadenylation site, 3935 base pairs of 5'-flanking DNA, and 766 base pairs of 3'-flanking DNA. The gene contains 12 exons separated by 11 introns. The exons range in size from 62 to 325 base pairs while the introns are 76-15 166 base pairs in size. The area sequenced contains 23 copies of Alu repetitive DNA and a single copy of an "O" family repeat. All but one of these repeat sequences are located in the first three introns or the 5'-flanking region. The apparent promoter region of the gene lacks the "TATA" and "CAAT" sequences often found in eucaryotic promoters and is extremely G/C rich. Contained within this region are areas homologous to other G/C-rich promoters, including six decanucleotide sequences that are highly homologous to sequences identified as functional binding sites for transcription factor Sp1.
The pyrrol[1,4]benzodiazepine antibiotics anthramycin, tomaymycin, sibiromycin, and neothramycins A and B are potent antitumor agents that bind to DNA in a unique manner, resulting in some unusual biological consequences. This paper describes results on which the points of covalent linkage between the drugs (carbinolamine carbon atom) and DNA (N-2 of guanine) are deduced, as well as Corey-Pauling-Koltun (CPK) models for the various drug-DNA adducts. Predictions based upon these CPK models have been tested, and the results are reported in this paper. These tested experimental predictions include (1) instability of the drug-DNA adducts to denaturation of DNA, (2) saturation binding limits, (3) effect of drug binding on the structure of DNA, (4) lack of unwinding and in vitro strand breakage of closed-circular supercoiled simian virus 40 (SV-40) DNA, (5) sensitivity of the secondary structure of DNA to drug binding, (6) hydrodynamic properties of the drug-DNA adducts, (7) hydrogen bonding of the 9-phenolic proton in anthramycin to DNA, (8) structure-activity relationships, and (9) biological consequences of DNA damage, including cumulative damage and slow excision repair, double-strain breaks in DNA in repair-proficient cells, and the selective inhibition of H-strand DNA synthesis in mitochondria. The results are completely in accord with our postulated space-filling models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.