We present here a detailed study of the specific nanoparticle structures that give rise to single-molecule surface-enhanced Raman scattering (SMSERS). A variety of structures are observed, but the simplest are dimers of Ag nanocrystals. We chose one of these structures for detailed study using electrodynamics calculations and found that the electromagnetic SERS enhancement factors of 10(9) are easily obtained and are consistent with single-molecule SERS activity.
Nanomaterials exhibiting plasmonic optical responses are impacting sensing, information processing, catalysis, solar, and photonics technologies. Recent advances have expanded the portfolio of plasmonic nanostructures into doped semiconductor nanocrystals, which allow dynamic manipulation of carrier densities. Once interpreted as intraband single-electron transitions, the infrared absorption of doped semiconductor nanocrystals is now commonly attributed to localized surface plasmon resonances and analyzed using the classical Drude model to determine carrier densities. Here, we show that the experimental plasmon resonance energies of photodoped ZnO nanocrystals with controlled sizes and carrier densities diverge from classical Drude model predictions at small sizes, revealing quantum plasmons in these nanocrystals. A Lorentz oscillator model more adequately describes the data and illustrates a closer link between plasmon resonances and single-electron transitions in semiconductors than in metals, highlighting a fundamental contrast between these two classes of plasmonic materials.
The surface-enhanced Raman excitation profiles (REPs) of rhodamine 6G (R6G) on Ag surfaces are studied using a tunable optical parametric oscillator excitation source and versatile detection scheme. These experiments afford the ability to finely tune the excitation wavelength near the molecular resonance of R6G (i.e., approximately 500-575 nm) and perform wavelength-scanned surface-enhanced Raman excitation measurements of a single molecule. The ensemble-averaged surface-enhanced REPs are measured for collections of molecules on Ag island films. The relative contributions of the 0-0 and 0-1 vibronic transitions to the surface-enhanced REPs vary with vibrational frequency. These results highlight the role of excitation energy in determining the resonance Raman intensities for R6G on surface-enhancing nanostructures. Single-molecule measurements are obtained from individual molecules of R6G on Ag colloidal aggregates, where single-molecule junctions are located using the isotope-edited approach. Overall, single-molecule surface-enhanced REPs are narrow in comparison to the ensemble-averaged excitation profiles due to a reduction in inhomogeneous broadening. This work describes the first Raman excitation spectroscopy studies of a single molecule, revealing new information previously obscured by the ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.