The ATR-X syndrome is an X-linked disorder comprising severe psychomotor retardation, characteristic facial features, genital abnormalities, and alpha-thalassemia. We have shown that ATR-X results from diverse mutations of XH2, a member of a subgroup of the helicase superfamily that includes proteins involved in a wide range of cellular functions, including DNA recombination and repair (RAD16, RAD54, and ERCC6) and regulation of transcription (SW12/SNF2, MOT1, and brahma). The complex ATR-X phenotype suggests that XH2, when mutated, down-regulates expression of several genes, including the alpha-globin genes, indicating that it could be a global transcriptional regulator. In addition to its role in the ATR-X syndrome, XH2 may be a good candidate for other forms of X-linked mental retardation mapping to Xq13.
ATR-X (alpha thalassemia/mental retardation, X-linked) syndrome is a human congenital disorder that causes severe intellectual disabilities. Mutations in the ATRX gene, which encodes an ATP-dependent chromatin-remodeler, are responsible for the syndrome. Approximately 50% of the patient missense mutations are clustered in a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, AD-DATRX), indicating its importance. However, the function of ADDATRX has remained elusive. Here we identify ADDATRX as a novel histone H3 binding module, whose binding is promoted by lysine 9 trimethylation (H3K9me3) but inhibited by H3K4me3. The co-crystal structures of ADDATRX bound to H31–15K9me3 peptide reveals an atypical composite H3K9me3-binding pocket, which is distinct from the conventional trimethyllysine-binding aromatic cage. Importantly, H3K9me3-pocket mutants and ATR-X syndrome mutants are defective in both H3K9me3 binding and localization at pericentromeric heterochromatin. Thus, we have discovered a unique histone recognition mechanism underlying the ATR-X etiology.
ATRX is a member of the SNF2 family of helicase͞ATPases that is thought to regulate gene expression via an effect on chromatin structure and͞or function. Mutations in the hATRX gene cause severe syndromal mental retardation associated with ␣-thalassemia. Using indirect immunofluorescence and confocal microscopy we have shown that ATRX protein is associated with pericentromeric heterochromatin during interphase and mitosis. By coimmunofluorescence, ATRX localizes with a mouse homologue of the Drosophila heterochromatic protein HP1 in vivo, consistent with a previous two-hybrid screen identifying this interaction. From the analysis of a trap assay for nuclear proteins, we have shown that the localization of ATRX to heterochromatin is encoded by its N-terminal region, which contains a conserved plant homeodomainlike finger and a coiled-coil domain. In addition to its association with heterochromatin, at metaphase ATRX clearly binds to the short arms of human acrocentric chromosomes, where the arrays of ribosomal DNA are located. The unexpected association of a putative transcriptional regulator with highly repetitive DNA provides a potential explanation for the variability in phenotype of patients with identical mutations in the ATRX gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.