Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca²(+)-permeable cation channels which are blocked by extracellular Mg²(+) in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2A(N615K) (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg²(+) block and a decrease in Ca²(+) permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.
The ATR-X syndrome is an X-linked disorder comprising severe psychomotor retardation, characteristic facial features, genital abnormalities, and alpha-thalassemia. We have shown that ATR-X results from diverse mutations of XH2, a member of a subgroup of the helicase superfamily that includes proteins involved in a wide range of cellular functions, including DNA recombination and repair (RAD16, RAD54, and ERCC6) and regulation of transcription (SW12/SNF2, MOT1, and brahma). The complex ATR-X phenotype suggests that XH2, when mutated, down-regulates expression of several genes, including the alpha-globin genes, indicating that it could be a global transcriptional regulator. In addition to its role in the ATR-X syndrome, XH2 may be a good candidate for other forms of X-linked mental retardation mapping to Xq13.
Rett syndrome is a severe X-linked neurological disorder in which most patients have mutations in the methyl-CpG binding protein 2 (MECP2) gene and suffer from bioaminergic deficiencies and life-threatening breathing disturbances. We used in vivo plethysmography, in vitro electrophysiology, neuropharmacology, immunohistochemistry, and biochemistry to characterize the consequences of the MECP2 mutation on breathing in wild-type (wt) and Mecp2-deficient (Mecp2-/y) mice. At birth, Mecp2-/y mice showed normal breathing and a normal number of medullary neurons that express tyrosine hydroxylase (TH neurons). At ϳ1 month of age, most Mecp2-/y mice showed respiratory cycles of variable duration; meanwhile, their medulla contained a significantly reduced number of TH neurons and norepinephrine (NE) content, even in Mecp2-/y mice that showed a normal breathing pattern. Between 1 and 2 months of age, all unanesthetized Mecp2-/y mice showed breathing disturbances that worsened until fatal respiratory arrest at ϳ2 months of age. During their last week of life, Mecp2-/y mice had a slow and erratic breathing pattern with a highly variable cycle period and frequent apneas. In addition, their medulla had a drastically reduced number of TH neurons, NE content, and serotonin (5-HT) content. In vitro experiments using transverse brainstem slices of mice between 2 and 3 weeks of age revealed that the rhythm produced by the isolated respiratory network was irregular in Mecp2-/y mice but could be stabilized with exogenous NE. We hypothesize that breathing disturbances in Mecp2-/y mice, and probably Rett patients, originate in part from a deficiency in noradrenergic and serotonergic modulation of the medullary respiratory network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.