[1] We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our twodimensional geometry constraint inversion, including the use of 'average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our threedimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.
We computed the global wavefield excited by Model III using the spectral element method (SEM) (1) for a 3D Earth model composed of mantle model s20rts (1), model Crust 2.0 (2), and topography from ETOPO5. We show the predicted velocities and displacements on the Earth's surface as movies. The 3D simulations were used to calibrate the effect of 3D structure on the 1D waveforms used in the inversion for Model III. By comparing the fits of synthetics computed for different models to data that were not used in the inversions these synthetics can be used to distinguish between models.This was done qualitatively when developing model III to estimate the improvements between successive versions of the model. The waveforms for model III match the overall amplitude and directivity in observed seismograms (Fig. S1) over a wide
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.