A number of proteins have recently been identified which play roles in regulating bone development. One important example is Indian hedgehog (Ihh) which is secreted by the prehyprtrophic chondrocytes. Ihh acts as an activator of a second secreted factor, parathyroid hormone-related protein (PTHrP), which, in turn, negatively regulates the rate of chondrocyte differentiation. Here we examine the expression of these genes and their molecular targets during different stages of bone development. In addition to regulating PTHrP expression in the perichondrium, we find evidence that Ihh may also act on the chondrocytes themselves at particular stages. As bone growth continues postnatally in mammals and the developmental process is reactivated during fracture repair, understanding the molecular basis regulating bone development is of medical relevance. We find that the same molecules that regulate embryonic endochondral ossification are also expressed during postnatal bone growth and fracture healing, suggesting that these processes are controlled by similar mechanisms.
The capacity of isolated chondrocytes to join separate masses of cartilage matrix was investigated with composites implanted in subcutaneous pouches in nude mice. Slices of articular cartilage were harvested from lambs and were devitalized by cyclic freezing and thawing. The slices were then either co-cultured with viable allogeneic lamb chondrocytes (experimental) or cultured without such chondrocytes (control). Composites of three slices were constructed with use of fibrin glue and were implanted in nude mice for periods ranging from 7 to 42 days. Bonding of the experimental matrices with viable chondrocytes was achieved at 28 and 42 days, as assessed by direct examination, histology, thymidine uptake, and fluorescence. No bonding occurred in the control composites without viable chondrocytes. We conclude that devitalized cartilage matrix is a scaffold to which isolated chondrocytes can attach and begin to repopulate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.