A number of proteins have recently been identified which play roles in regulating bone development. One important example is Indian hedgehog (Ihh) which is secreted by the prehyprtrophic chondrocytes. Ihh acts as an activator of a second secreted factor, parathyroid hormone-related protein (PTHrP), which, in turn, negatively regulates the rate of chondrocyte differentiation. Here we examine the expression of these genes and their molecular targets during different stages of bone development. In addition to regulating PTHrP expression in the perichondrium, we find evidence that Ihh may also act on the chondrocytes themselves at particular stages. As bone growth continues postnatally in mammals and the developmental process is reactivated during fracture repair, understanding the molecular basis regulating bone development is of medical relevance. We find that the same molecules that regulate embryonic endochondral ossification are also expressed during postnatal bone growth and fracture healing, suggesting that these processes are controlled by similar mechanisms.
The capacity of isolated chondrocytes to join separate masses of cartilage matrix was investigated with composites implanted in subcutaneous pouches in nude mice. Slices of articular cartilage were harvested from lambs and were devitalized by cyclic freezing and thawing. The slices were then either co-cultured with viable allogeneic lamb chondrocytes (experimental) or cultured without such chondrocytes (control). Composites of three slices were constructed with use of fibrin glue and were implanted in nude mice for periods ranging from 7 to 42 days. Bonding of the experimental matrices with viable chondrocytes was achieved at 28 and 42 days, as assessed by direct examination, histology, thymidine uptake, and fluorescence. No bonding occurred in the control composites without viable chondrocytes. We conclude that devitalized cartilage matrix is a scaffold to which isolated chondrocytes can attach and begin to repopulate.
In this study, devitalized meniscal tissue pre-seeded with viable cultured chondrocytes was used to repair a bucket-handle incision in meniscal tissue transplanted to nude mice. Lamb knee menisci were devitalized by cyclic freezing and thawing. Chips measuring four by two by one-half millimeters were cut from this devitalized tissue to serve as scaffolds. These chips were then cultured either with or without viable allogeneic lamb chondrocytes. From the inner third of the devitalized meniscal tissue, rectangles were also cut approximately 8 x 6 mm. A 4 mm bucket-handle type incision was made in these blocks. The previously prepared chips either with (experimental group) or without viable chondrocytes (control group) were positioned into the incisions and secured with suture. Further control groups included blocks of devitalized menisci with incisions into which no chips were positioned and either closed with suture or left open with no suture. Specimens were transplanted to subcutaneous pouches of nude mice for 14 weeks. After 14 weeks, seven of eight experimental specimens (chips with viable chondrocytes) demonstrated bridging of the incision assessed by gross inspection and manual distraction. All the control groups were markedly different from the experimental group in that the incision remained grossly visible. Histological analysis was consistent with the differences apparent at the gross level. Only the experimental specimens (chips with viable chondrocytes) with gross bridging demonstrated obliteration of the interface between incision and scaffold. None of the control specimens revealed any cells or tissue filling the incision. Tissue engineering using scaffolds and viable cells may have an application in meniscal repair in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.