Aims/hypothesis Central nervous system abnormalities, including cognitive and brain impairments, have been documented in adults with type 2 diabetes who also have multiple co-morbid disorders that could contribute to these observations. Assessing adolescents with type 2 diabetes will allow the evaluation of whether diabetes per se may adversely affect brain function and structure years before clinically significant vascular disease develops. Methods Eighteen obese adolescents with type 2 diabetes and 18 obese controls without evidence of marked insulin resistance, matched on age, sex, school grade, ethnicity, socioeconomic status, body mass index and waist circumference, completed MRI and neuropsychological evaluations. Results Adolescents with type 2 diabetes performed consistently worse in all cognitive domains assessed, with the difference reaching statistical significance for estimated intellectual functioning, verbal memory and psychomotor efficiency. There were statistical trends for executive function, reading and spelling. MRI-based automated brain structural analyses revealed both reduced white matter volume and enlarged cerebrospinal fluid space in the whole brain and the frontal lobe in particular, but there was no obvious grey matter volume reduction. In addition, assessments using diffusion tensor imaging revealed reduced white and grey matter microstructural integrity. Conclusions/interpretation This is the first report documenting possible brain abnormalities among obese adolescents with type 2 diabetes relative to obese adolescent controls. These abnormalities are not likely to result from education or socioeconomic bias and may result from a combination of subtle vascular changes, glucose and lipid metabolism abnormalities and subtle differences in adiposity in the absence of clinically significant vascular disease. Future efforts are needed to elucidate the underlying pathophysiological mechanisms.
Objective We ascertain whether pediatric obesity without clinically-significant insulin resistance (IR) impacts brain structure and function. Design and Methods Thirty obese and 30 matched lean adolescents, all without clinically-significant IR or a diagnosis of metabolic syndrome (MetS), received comprehensive endocrine, neuropsychological, and MRI evaluations. Results Relative to lean adolescents, obese non-IR adolescents had significantly lower academic achievement (i.e. arithmetic and spelling) and tended to score lower on working memory, attention, psychomotor efficiency and mental flexibility. In line with our prior work on adolescent MetS, memory was unaffected in uncomplicated obesity. We also uncovered reductions in the thickness of the orbitofrontal and anterior cingulate cortices as well as reductions of microstructural integrity in major white matter tracts without gross volume changes. Conclusions We document, for the first time, that adolescents with uncomplicated obesity already have subtle brain alterations and lower performance in selective cognitive domains. When interpreting these preliminary data in the context of our prior reports of similar, but more extensive brain findings in obese adolescents with MetS and T2DM, we conclude that “uncomplicated” obesity may also result in subtle brain alterations, suggesting a possible dose effect with more severe metabolic dysregulation giving rise to greater abnormalities.
Declarative memory impairment is frequently reported among adults with type 2 diabetes mellitus (T2DM), who also demonstrate hippocampal volume reduction. Our goals were to ascertain whether emotional memory, which is mediated by neural circuits overlapping those of declarative memory, is also affected. In addition we wanted to characterize cerebral white matter (WM) involvement in T2DM. We studied 24 middle-aged and elderly patients with T2DM who were free of obvious vascular pathology or a psychiatric disorder, and 17 age-and education-matched healthy individuals with no evidence of insulin resistance. We examined emotional and neutral memory and performed a whole-brain voxelwise WM assessment utilizing diffusion tensor imaging (DTI). We found clear evidence of impairment in declarative memory among diabetic subjects and in addition found some preliminary support to suggest a possible blunting of the memory facilitation by emotional material among female but not male diabetics. This report is also the first DTI assessment among individuals with T2DM, which after accounting for overt WM damage, revealed diffuse but predominantly frontal and temporal WM microstructural abnormalities, with extensive involvement of the temporal stem. Hierarchical regression analyses demonstrated that immediate, but not delayed, emotional memory performance was explained by temporal stem FA, independent of age, poor metabolic regulation, and systolic blood pressure. Given that the temporal lobe memory networks appear to be particularly vulnerable to the deleterious effects of T2DM, this may help explain the observed memory impairments among diabetics. Future efforts should better clarify, with a larger sample, whether emotional memory is affected in adults with T2DM and whether there are clear gender effects.
Familial dysautonomia (FD) is a hereditary peripheral and central nervous system disorder with poorly defined central neuropathology. This prospective pilot study aimed to determine if MRI would provide objective parameters of central neuropathology. There were 14 study subjects, seven FD individuals (18.6 +/- 4.2 years, 3 female) and seven controls (19.1 +/- 5.8 years, 3 female). All subjects had standardized brain MRI evaluation including quantitative regional volume measurements, diffusion tensor imaging (DTI) for assessment of white matter (WM) microstructural integrity by calculation of fractional anisotropy (FA), and proton MR spectroscopy ((1)H MRS) to assess neuronal health. The FD patients had significantly decreased FA in optic radiation (p = 0.009) and middle cerebellar peduncle (p = 0.004). Voxel-wise analysis identified both GM and WM microstructural damage among FD subjects as there were nine clusters of WM FA reductions and 16 clusters of GM apparent diffusion coefficient (ADC) elevations. Their WM proportion was significantly decreased (p = 0.003) as was the WM proportion in the frontal region (p = 0.007). (1)H MRS showed no significant abnormalities. The findings of WM abnormalities and decreased optic radiation and middle cerebellar peduncle FA in the FD study group, suggest compromised myelination and WM micro-structural integrity in FD brains. These neuroimaging results are consistent with clinical visual abnormalities and gait disturbance. Furthermore the frontal lobe atrophy is consistent with previously reported neuropsychological deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.