International audienceWe propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L. Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator Ttg = g(tL). The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing L. We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains
In this paper we study the problem of recovering sparse or compressible signals from uniformly quantized measurements. We present a new class of convex optimization programs, or decoders, coined Basis Pursuit DeQuantizer of moment p (BPDQ p ), that model the quantization distortion more faithfully than the commonly used Basis Pursuit DeNoise (BPDN) program. Our decoders proceed by minimizing the sparsity of the signal to be reconstructed subject to a data-fidelity constraint expressed in the p -norm of the residual error for 2 p ∞.We show theoretically that, (i) the reconstruction error of these new decoders is bounded if the sensing matrix satisfies an extended Restricted Isometry Property involving the p norm, and (ii), for Gaussian random matrices and uniformly quantized measurements, BPDQ p performance exceeds that of BPDN by dividing the reconstruction error due to quantization by √ p + 1. This last effect happens with high probability when the number of measurements exceeds a value growing with p, i.e., in an oversampled situation compared to what is commonly required by BPDN = BPDQ 2 . To demonstrate the theoretical power of BPDQ p , we report numerical simulations on signal and image reconstruction problems.
The purpose of this note is threefold. First we state a few conjectures that allow us to rigorously derive a theory which is asymptotic in N (the number of agents) that describes transients in large arrays of (identical) linear damped harmonic oscillators in R with completely decentralized nearest neighbor interaction. We then use the theory to establish that in a certain range of the parameters transients grow linearly in the number of agents (and faster outside that range). Finally, in the regime where this linear growth occurs we give the constant of proportionality as a function of the signal velocities (see [3]) in each of the two directions. As corollaries we show that symmetric interactions are far from optimal and that all these results independent of (reasonable) boundary conditions.
Abstract-We develop a statistical model to describe the spatially varying behavior of local neighborhoods of coefficients in a multiscale image representation. Neighborhoods are modeled as samples of a multivariate Gaussian density that are modulated and rotated according to the values of two hidden random variables, thus allowing the model to adapt to the local amplitude and orientation of the signal. A third hidden variable selects between this oriented process and a nonoriented scale mixture of Gaussians process, thus providing adaptability to the local orientedness of the signal. Based on this model, we develop an optimal Bayesian least squares estimator for denoising images and show through simulations that the resulting method exhibits significant improvement over previously published results obtained with Gaussian scale mixtures.Index Terms-Gaussian Scale Mixtures, image denoising, image processing, statistical image modeling, wavelet transforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.