Pathologic states within the prostate may be reflected by changes in serum proteomic patterns. To test this hypothesis, we analyzed serum proteomic mass spectra with a bioinformatics tool to reveal the most fit pattern that discriminated the training set of sera of men with a histopathologic diagnosis of prostate cancer (serum prostate-specific antigen [PSA] > or =4 ng/mL) from those men without prostate cancer (serum PSA level <1 ng/mL). Mass spectra of blinded sera (N = 266) from a test set derived from men with prostate cancer or men without prostate cancer were matched against the discriminating pattern revealed by the training set. A predicted diagnosis of benign disease or cancer was rendered based on similarity to the discriminating pattern discovered from the training set. The proteomic pattern correctly predicted 36 (95%, 95% confidence interval [CI] = 82% to 99%) of 38 patients with prostate cancer, while 177 (78%, 95% CI = 72% to 83%) of 228 patients were correctly classified as having benign conditions. For men with marginally elevated PSA levels (4-10 ng/mL; n = 137), the specificity was 71%. If validated in future series, serum proteomic pattern diagnostics may be of value in deciding whether to perform a biopsy on a man with an elevated PSA level.
We previously reported that ethanol fixation and paraffin embedding of tissues produce excellent histomorphology and good preservation of macromolecules. Here, we present a detailed evaluation of ethanol-fixed tissues for proteomic initiatives. When proteins were extracted from ethanol-fixed, paraffin-embedded prostate tissue, resolved by two-dimensional gel electrophoresis (2-DE), and stained by standard methods, several hundred protein molecules could be detected and successfully analyzed by mass spectrometry. Protein profiles obtained from ethanol-fixed tissues were highly similar to those observed from frozen tissues, in contrast to the poor protein recovery from formalin-fixed material. The protein content of specific cells that were microdissected from ethanol-fixed tissue sections using laser capture microdissection could also be successfully analyzed by 2-DE. We observed that eosin staining of tissue sections had a detrimental effect on protein separation, whereas hematoxylin staining had minimal consequence. In order to illustrate the applicability of ethanol-fixed tissues for proteomic discovery studies, we compared the protein profiles of patient-matched, normal prostatic epithelial cells and invasive adenocarcinoma cells obtained from ethanol-fixed, paraffin-embedded tissues. A number of differentially expressed proteins was discovered and identified by mass spectrometry. Immunohistochemical analyses performed on ethanol-fixed tissue sections were in agreement with the proteomic discovery findings. In light of these results, we conclude that ethanol-fixed tissues can be successfully utilized for proteomic analyses.
The overall cancer detection rate is not materially increased by 12 core, peripheral zone biopsy in men in whom prostate cancer was mainly detected by screening.
Higher Gleason score correlated with high levels of conditioned medium derived interleukin-6. Moreover, cell signaling analysis of periprostatic adipose tissue identified activated signaling molecules, including STAT3, that correlated with Gleason score. Since STAT3 is interleukin-6 regulated, these findings suggest that periprostatic adipose tissue may have a role in modulating prostate cancer aggressiveness by serving as a source of interleukin-6. Also, we found low numbers of inflammatory cells in the fat, suggesting that adipocytes are the major secretors of interleukin-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.