At the Surface Heat Budget of the Arctic Ocean (SHEBA) program's field site in the northern Chukchi Sea, snow and ice meltwater flow was found to have a strong impact on the heat and mass balance of sea ice during the summer of 1998. Pathways and rates of meltwater transport were derived from tracer studies (H218O, 7Be, and release of fluorescent dyes), complemented by in situ sea‐ice permeability measurements. It was shown that the balance between meltwater supply at the surface (averaging between 3.5 and 10.5 mm d−1) and ice permeability (between <10−11 and >10−9 m2) determines the retention and pooling of meltwater, which in turn controls ice albedo. We found that the seasonal evolution of first‐year and multiyear ice permeability and surface morphology determine four distinct stages of melt. At the start of the ablation season (stage 1), ponding is widespread and lateral melt flow dominates. Several tens of cubic meters of meltwater per day were found to drain hundreds to thousands of square meters of ice through flaws and permeable zones. Significant formation of underwater ice, composed between <30 and >50% of meteoric water, formed at these drainage sites. Complete removal of snow cover, increase in ice permeability, and reductions in hydraulic gradients driving fluid flow mark stage 2, concurrent with a reduction in pond coverage and albedo. During stage 3, maximum permeabilities were measured, with surface meltwater penetrating to 1 m depth in the ice and convective overturning and desalination found to dominate the lower layers of first‐year and thin multiyear ice. Enhanced fluid flow into flaws and permeable zones was observed to promote ice floe breakup and disintegration, concurrent with increases in pond salinities and 7Be. Advective heat flows of several tens of watts per square meter were derived, promoting widening of ponds and increases in pond coverage. Stage 4 corresponds to freeze‐up. Roughly 40% of the total surface melt was retained by the ice cover within the ice matrix as well as in surface and under‐ice ponds (with a total net retention of 15%). Based on this work, areas of improvement for fully prognostic simulations of ice albedo are identified, calling for parameterizations of sea‐ice permeability and the integration of ice topography and refined ablation schemes into atmosphere‐ice‐ocean models.
a b s t r a c tMetabolic activity in the water column below the euphotic zone is ultimately fuelled by the vertical flux of organic material from the surface. Over time, the deep ocean is presumably at steady state, with sources and sinks balanced. But recently compiled global budgets and intensive local field studies suggest that estimates of metabolic activity in the dark ocean exceed the influx of organic substrates. This imbalance indicates either the existence of unaccounted sources of organic carbon or that metabolic activity in the dark ocean is being over-estimated. Budgets of organic carbon flux and metabolic activity in the dark ocean have uncertainties associated with environmental variability, measurement capabilities, conversion parameters, and processes that are not well sampled. We present these issues and quantify associated uncertainties where possible, using a Monte Carlo analysis of a published data set to determine the probability that the imbalance can be explained purely by uncertainties in measurements and conversion factors. A sensitivity analysis demonstrates that the bacterial growth efficiencies and assumed cell carbon contents have the greatest effects on the magnitude of the carbon imbalance. Two poorly quantified sources, lateral advection of particles and a population of slowly settling particles, are discussed as providing a means of closing regional carbon budgets. Finally, we make recommendations concerning future research directions to reduce important uncertainties and allow a better determination of the magnitude and causes of the unbalanced carbon budgets.
shelf-and river-derived elements to the central Arctic Ocean • The TPD is rich in dissolved organic matter (DOM), which facilitates long-range transport of trace metals that form complexes with DOM • Margin trace element fluxes may increase with future Arctic warming due to DOM release from permafrost thaw and increasing river discharge
Transects of the submersible Alvin across rock outcrops in the Oregon subduction zone have furnished information on the structural and stratigraphic framework of this accretionary complex. Communities of clams and tube worms, and authigenic carbonate mineral precipitates, are associated with venting sites of cool fluids located on a fault-bend anticline at a water depth of 2036 meters. The distribution of animals and carbonates suggests up-dip migration of fluids from both shallow and deep sources along permeable strata or fault zones within these clastic deposits. Methane is enriched in the water column over one vent site, and carbonate minerals and animal tissues are highly enriched in carbon-12. The animals use methane as an energy and food source in symbiosis with microorganisms. Oxidized methane is also the carbon source for the authigenic carbonates that cement the sediments of the accretionary complex. The animal communities and carbonates observed in the Oregon subduction zone occur in strata as old as 2.0 million years and provide criteria for identifying other localities where modern and ancient accreted deposits have vented methane, hydrocarbons, and other nutrient-bearing fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.