At the Surface Heat Budget of the Arctic Ocean (SHEBA) program's field site in the northern Chukchi Sea, snow and ice meltwater flow was found to have a strong impact on the heat and mass balance of sea ice during the summer of 1998. Pathways and rates of meltwater transport were derived from tracer studies (H218O, 7Be, and release of fluorescent dyes), complemented by in situ sea‐ice permeability measurements. It was shown that the balance between meltwater supply at the surface (averaging between 3.5 and 10.5 mm d−1) and ice permeability (between <10−11 and >10−9 m2) determines the retention and pooling of meltwater, which in turn controls ice albedo. We found that the seasonal evolution of first‐year and multiyear ice permeability and surface morphology determine four distinct stages of melt. At the start of the ablation season (stage 1), ponding is widespread and lateral melt flow dominates. Several tens of cubic meters of meltwater per day were found to drain hundreds to thousands of square meters of ice through flaws and permeable zones. Significant formation of underwater ice, composed between <30 and >50% of meteoric water, formed at these drainage sites. Complete removal of snow cover, increase in ice permeability, and reductions in hydraulic gradients driving fluid flow mark stage 2, concurrent with a reduction in pond coverage and albedo. During stage 3, maximum permeabilities were measured, with surface meltwater penetrating to 1 m depth in the ice and convective overturning and desalination found to dominate the lower layers of first‐year and thin multiyear ice. Enhanced fluid flow into flaws and permeable zones was observed to promote ice floe breakup and disintegration, concurrent with increases in pond salinities and 7Be. Advective heat flows of several tens of watts per square meter were derived, promoting widening of ponds and increases in pond coverage. Stage 4 corresponds to freeze‐up. Roughly 40% of the total surface melt was retained by the ice cover within the ice matrix as well as in surface and under‐ice ponds (with a total net retention of 15%). Based on this work, areas of improvement for fully prognostic simulations of ice albedo are identified, calling for parameterizations of sea‐ice permeability and the integration of ice topography and refined ablation schemes into atmosphere‐ice‐ocean models.
Abstract. Snow on Antarctic sea ice plays a complex and highly variable role in air-sea-ice interaction processes and the Earth's climate system. Using data collected mostly during the past 10 years, this paper reviews the following topics: snow thickness and snow type and their geographical and seasonal variations; snow grain size, density, and salinity; frequency of occurrence of slush; thermal conductivity, snow surface temperature, and temperature gradients within snow; and the effect of snow thickness on albedo. Major findings include large regional and seasonal differences in snow properties and thicknesses; the consequences of thicker snow and thinner ice in the Antarctic relative to the Arctic (e.g., the importance of flooding and snow-ice formation); the potential impact of increasing snowfall resulting from global climate change; lower observed values of snow thermal conductivity than those typically used in models; periodic large-scale melt in winter; and the contrast in summer melt processes between the Arctic and the Antarctic. Both climate modeling and remote sensing would benefit by taking account of the differences between the two polar regions. INTRODUCTIONAt maximum extent each year (September-October), sea ice covers a vast area of the Southern Ocean (---19 million km2), attaining latitudes as far north as ---55øS [Gloersen et al., 1992]. In so doing, it profoundly alters the exchange of energy and mass between ocean and atmosphere and forms an integral part of the global climate system. These effects are significantly amplified by the presence of an insulative snow cover which is itself highly variable in thickness and properties. Persistently strong winds redistribute the snow, and its properties [Gordon and Huber, 1990] on snow distribution and properties have only been conducted in the past 5-10 years. These studies are beginning to establish the full significance of snow on Antarctic sea ice as a key component of the global climate system. In this paper we review the major findings. Section 2 is a summary of snow data from five Antarctic sectors (designated by Gloersen et al. [1992]), namely, the Weddell Sea (20øE-60øW), the Indian Ocean (20øE-90øE), the western Pacific Ocean (90øE-160øE), the Ross Sea (160øE-140øW), and the Bellingshausen and Amundsen Seas (140øW-60øW), as shown in Figure 1. The Indian and western Pacific Ocean sectors are collectively referred to as the East Antarctic sector. Section 3 assesses the significance of snow in the air-sea-ice interaction system. New findings have significant implications for modeling (both physical and biological) and remotesensing studies of Antarctic sea ice. Gaps in our current knowledge are identified. Finally, the possible enhanced role of snow under global warming conditions is examined. Throughout, snow is described using the combined morphological and process-oriented classification of snow types of Colbeck et al. [1990] As a result, thickness may not be directly related to either the frequency or duration of snowfall.Mean snow thi...
[1] Over the past few decades the Arctic sea ice cover has decreased in areal extent. This has altered the solar radiation forcing on the Arctic atmosphere-ice-ocean system by decreasing the surface albedo and allowing more solar heating of the upper ocean. This study addresses how the amount of solar energy absorbed in areas of open water in the Arctic Basin has varied spatially and temporally over the past few decades. A synthetic approach was taken, combining satellite-derived ice concentrations, incident irradiances determined from reanalysis products, and field observations of ocean albedo over the Arctic Ocean and the adjacent seas. Results indicate an increase in the solar energy deposited in the upper ocean over the past few decades in 89% of the region studied. The largest increases in total yearly solar heat input, as much as 4% per year, occurred in the Chukchi Sea and adjacent areas.
[1] The fluid permeability k of sea ice constrains a broad range of processes, such as the growth and decay of seasonal ice, the evolution of summer ice albedo, and biomass build-up. Such processes are critical to how sea ice and associated ecosystems respond to climate change. However, studies of k and its dependence on brine porosity f and microstructure are sparse. Here we present a multifaceted theory for k(f) which closely captures laboratory and field data. X-ray computed tomography provides an unprecedented look at the brine phase and its connectivity. We find that sea ice displays universal transport properties remarkably similar to crustal rocks, yet over a much narrower temperature range. Our results yield simple parameterizations for fluid transport in terms of temperature and salinity, and permit more realistic representations of sea ice in global climate and biological models. Citation:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.