The rational design of ion exchange membranes (IEMs) is becoming more pertinent as their usage becomes broader and as their staple applications (i.e., electrodialysis, flow batteries, and fuel cells) improve in commercial viability. Such efforts would be catalyzed by an improved fundamental understanding of ion transport in IEMs. This review discusses recent progress in modeling ion partitioning and diffusion in IEMs in an effort to relate IEM performance metrics to fundamental membrane properties over which researchers and membrane manufacturers possess direct and sometimes precise control. Central focus is given to the Donnan‐Manning model for ion partitioning and the Manning‐Meares model for ion diffusion in IEMs. These two frameworks, which are derived from Manning's counter‐ion condensation theory for polyelectrolyte solutions, have been widely used within the IEM literature since their recent introduction. To explore this topic, the mathematical derivation of both models is revisited, followed by a survey of experimental and computational discussions of counter‐ion condensation in IEMs. Alternative models which fulfill similar roles in predicting IEM transport properties are compared. This review concludes by highlighting the uniquely favorable positions of the Donnan‐Manning and Manning‐Meares models and discussing their prospects as leading predictors of IEM partitioning and diffusive properties.
Melt blowing combines extrusion of a polymer melt through orifices and attenuation of the extrudate with hot high-velocity air jets to produce nonwoven fibers in a single step. Due to its simplicity and high-throughput nature, melt blowing produces more than 10% of global nonwovens (∼$50 billion market). Semicrystalline thermoplastic feedstock, such as poly(butylene terephthalate), polyethylene, and polypropylene, have dominated the melt blowing industry because of their facile melt processability and thermal/chemical resistance; other amorphous commodity thermoplastics (e.g., styrenics, (meth)acrylates, etc.) are generally not employed because they lack one or both characteristics. Cross-linking commodity polymers could enable them to serve more demanding applications, but cross-linking is not compatible with melt processing, and it must be implemented after fiber formation. Here, cross-linked fibers were fabricated by melt blowing linear anthracene-functionalized acrylic polymers into fibers, which were subsequently cross-linked via anthracene-dimerization triggered by either UV light or sunlight. The resulting fibers possessed nearly 100% gel content because of highly efficient anthracene photodimerization in the solid state. Compared to the linear precursors, the anthracene-dimer cross-linked acrylic fibers exhibited enhanced thermomechanical properties suggesting higher upper service temperatures (∼180 °C), showing promise for replacing traditional thermoplastic-based melt blown nonwovens in certain applications. Additionally, given the dynamic nature of the anthracene-dimer cross-links at elevated temperatures (> ∼180 °C), the resulting cross-linked fibers could be effectively recycled after use, providing new avenues toward sustainable nonwoven products.
Most nonwoven fiber mats are produced with a uniform, narrow fiber diameter distribution. However, building evidence suggests that a bimodal diameter distribution (i.e., comprised of two populations of fibers, one with a smaller average diameter (d av), d, and the other with a larger d av, D, where D ≥ 5d), has certain advantages in applications such as filtration media. To the best of our knowledge, all previous reports describing production of bimodal fiber diameter distributions have relied on solution-based electrospinning, a much less common fiber-spinning technique, compared to melt blowing, which currently produces more than 10% of nonwovens globally (an approximately $50 billion market). In this study, we demonstrate a facile method for producing bimodal fiber diameter distributions by melt blowing immiscible ternary polymer blends, with the two minority blend components being randomly dispersed as isolated, bimodally sized particles within the continuous matrix. Such a ternary blend can be obtained by selecting a matrix phase that preferentially wets/encapsulates both dispersed phases having vastly different viscosity ratios. Specifically, two model immiscible ternary blends comprised of polystyrene/polyethylene/Nylon-6 (PS/PE/Nylon) and poly(ethylene oxide)/polyethylene/Nylon-6 (PEO/PE/Nylon) with the desired morphologies and PS or PEO as the matrix were examined. During melt blowing of the blends, the PE minority domains (∼8 μm in diameter) and Nylon minority domains (∼70 μm in diameter) dispersed within the matrix were transformed to PE nanofibers (d av ≈ 560 nm) and Nylon microfibers (d av ≈ 8 μm) embedded in the elongated PS matrix fibers, and similarly for fibers made with a PEO matrix. Subsequent removal of the matrix polymer with an appropriate solvent (tetrahydrofuran for PS or water for PEO) produced a macroscopic mat of randomly distributed, bimodal nanofibers and microfibers. The nanofiber and microfiber compositions of the bimodal-diameter fiber mats were effectively tuned by varying the composition of the minority components of the original ternary polymer blends. Interestingly, the resulting bimodal-diameter fiber mats possessed few nanofiber bundles; we hypothesize that this is due to the presence of Nylon microfibers that are intrinsically intermixed among the PE nanofibers that physically restrict the formation of nanofiber bundles. Overall, this versatile method could provide a high-throughput route to scalable quantities of fiber mats with a bimodal distribution of fiber diameters, thus promoting the application of hierarchically structured nonwovens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.