A coherent global address space in a distributed system enables shared memory programming in a much larger scale than a single multicore or a single SMP. Without dedicated hardware support at this scale, the solution is a software distributed shared memory (DSM) system. However, traditional approaches to coherence (centralized via "active" home-node directories) and critical-section execution (distributed across nodes and cores) are inherently unfit for such a scenario. Instead, it is crucial to make decisions locally and avoid the long latencies imposed by both network and software message handlers. Likewise, synchronization is fast if it rarely involves communication with distant nodes (or even other sockets). To minimize the amount of long-latency communication required in both coherence and critical section execution, we propose a DSM system with a novel coherence protocol, and a novel hierarchical queue delegation locking approach. More specifically, we propose an approach, suitable for data-race-free (DRF) programs, based on selfinvalidation, self-downgrade, and passive data classification directories that require no message handlers, thereby incurring no extra latency. For fast synchronization we extend Queue Delegation Locking to execute critical sections in large batches on a single core before passing execution along to other cores, sockets, or nodes, in that hierarchical order. The result is a software DSM system called Argo which localizes as many decisions as possible and allows high parallel performance with little overhead on synchronization when compared to prior DSM implementations.
The scalability of parallel programs is often bounded by the performance of synchronization mechanisms used to protect critical sections. The performance of these mechanisms is in turn determined by their ability to use modern hardware efficiently and do useful work while or instead of waiting. This brief announcement sketches the idea and implementation of queue delegation locking, a synchronization mechanism that provides high throughput by allowing threads to efficiently delegate their critical sections to the thread currently holding the lock and by allowing threads that do not need a result from their critical section to continue executing immediately after delegating their work. Experiments show that queue delegation locking outperforms leading synchronization mechanisms due to the combination of its fast operation transfer with its ability to allow threads to continue doing useful work instead of waiting. Thanks to its simple building blocks, even its uncontended overhead is low, making queue delegation locking useful in a wide variety of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.