In recent years, smartphones have become an increasingly important storage facility for personal sensitive data ranging from photos and credentials up to financial and medical records like credit cards and person’s diseases. Trivially, it is critical to secure this information and only provide access to the genuine and authenticated user. Smartphone vendors have already taken exceptional care to protect user data by the means of various software and hardware security features like code signing, authenticated boot chain, dedicated co-processor and integrated cryptographic engines with hardware fused keys. Despite these obstacles, adversaries have successfully broken through various software protections in the past, leaving only the hardware as the last standing barrier between the attacker and user data. In this work, we build upon existing software vulnerabilities and break through the final barrier by performing the first publicly reported physical Side-Channel Analysis (SCA) attack on an iPhone in order to extract the hardware-fused devicespecific User Identifier (UID) key. This key – once at hand – allows the adversary to perform an offline brute-force attack on the user passcode employing an optimized and scalable implementation of the Key Derivation Function (KDF) on a Graphics Processing Unit (GPU) cluster. Once the passcode is revealed, the adversary has full access to all user data stored on the device and possibly in the cloud.As the software exploit enables acquisition and processing of hundreds of millions oftraces, this work further shows that an attacker being able to query arbitrary many chosen-data encryption/decryption requests is a realistic model, even for compact systems with advanced software protections, and emphasizes the need for assessing resilience against SCA for a very high number of traces.
Masking has been recognized as a sound and secure countermeasure for cryptographic implementations, protecting against physical side-channel attacks. Even though many different masking schemes have been presented over time, design and implementation of protected cryptographic Integrated Circuits (ICs) remains a challenging task. More specifically, correct and efficient implementation usually requires manual interactions accompanied by longstanding experience in hardware design and physical security. To this end, design and implementation of masked hardware often proves to be an error-prone task for engineers and practitioners. As a result, our novel tool for automated generation of masked hardware (AGEMA) allows even inexperienced engineers and hardware designers to create secure and efficient masked cryptograhic circuits originating from an unprotected design. More precisely, exploiting the concepts of Probe-Isolating Non-Interference (PINI) for secure composition of masked circuits, our tool provides various processing techniques to transform an unprotected design into a secure one, eventually accelerating and safeguarding the process of masking cryptographic hardware. Ultimately, we evaluate our tool in several case studies, emphasizing different trade-offs for the transformation techniques with respect to common performance metrics, such as latency, area, andrandomness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.