Wireless Local Area Networks (WLANs) are now commonplace on many academic and corporate campuses. As "Wi-Fi" technology becomes ubiquitous, it is increasingly important to understand trends in the usage of these networks.This paper analyzes an extensive network trace from a mature 802.11 WLAN, including more than 550 access points and 7000 users over seventeen weeks. We employ several measurement techniques, including syslogs, telephone records, SNMP polling and tcpdump packet sniffing. This is the largest WLAN study to date, and the first to look at a large, mature WLAN and consider geographic mobility. We compare this trace to a trace taken after the network's initial deployment two years ago.We found that the applications used on the WLAN changed dramatically. Initial WLAN usage was dominated by Web traffic; our new trace shows significant increases in peer-to-peer, streaming multimedia, and voice over IP (VoIP) traffic. On-campus traffic now exceeds off-campus traffic, a reversal of the situation at the WLAN's initial deployment. Our study indicates that VoIP has been used little on the wireless network thus far, and most VoIP calls are made on the wired network. Most calls last less than a minute.We saw greater heterogeneity in the types of clients used, with more embedded wireless devices such as PDAs and mobile VoIP clients. We define a new metric for mobility, the "session diameter." We use this metric to show that embedded devices have different mobility characteristics than laptops, and travel further and roam to more access points. Overall, users were surprisingly non-mobile, with half remaining close to home about 98% of the time.
All analytical and simulation research on ad hoc wireless networks must necessarily model radio propagation using simplifying assumptions. We provide a comprehensive review of six assumptions that are still part of many ad hoc network simulation studies, despite increasing awareness of the need to represent more realistic features, including hills, obstacles, link asymmetries, and unpredictable fading. We use an extensive set of measurements from a large outdoor routing experiment to demonstrate the weakness of these assumptions, and show how these assumptions cause simulation results to differ significantly from experimental results. We close with a series of recommendations for researchers, whether they develop protocols, analytic models, or simulators for ad hoc wireless networks.Mobile ad hoc networking (MANET) has become a lively field within the past few years. Since it is difficult to conduct experiments with real mobile computers and wireless networks, nearly all published MANET articles are buttressed with simulation results. Many such simulations may be based on overly simplistic assumptions, however; a recent article in IEEE Communications warns that "An opinion is spreading that one cannot rely on the majority of the published results on performance evaluation studies of telecommunication networks based on stochastic simulation, since they lack credibility" [10]. It then proceeded to survey 2200 published network simulation results to point out systemic flaws.Although not every simulation study needs to use the most detailed radio model available, nor explore every variation in the wide parameter space afforded by a complex model, there are real risks to protocol designs based on overly simple models of radio propagation. As the nodes move in an ad hoc network, the connectivity graph changes over time, but these changes depend significantly on variations in the range due to antenna differences, elevation (extending range), and obstacles (restricting range).We recognize that the MANET research community is increasingly aware of the limitations of its simplifying assumptions. Our goal in this paper is to make a constructive contribution to the MANET community by a) clearly identifying these assumptions and quantitatively demonstrating their weaknesses, b) comparing simulation results to experimental results to identify how simplistic radio models can lead to misleading results in ad hoc network research, c) contributing a real dataset that should be easy to incorporate into simulations, and d) listing recommendations for the designers of protocols, models, and simulators.Due to limited space, this paper presents only the main points. We present all of the details in an extended Technical Report [6]. MODELS USED IN RESEARCHThe simplest radio models are based on distance across flat terrain; radio communications are received perfectly within some circular "range" and not at all outside of that range. Real radios, including those used in the popular Berkeley Motes, demonstrate a strikingly non-uniform non-...
Understanding usage patterns in wireless local-area networks (WLANs) is critical for those who develop, deploy, and manage WLAN technology, as well as those who develop systems and application software for wireless networks. This paper presents results from the largest and most comprehensive trace of network activity in a large, production wireless LAN. For eleven weeks we traced the activity of nearly two thousand users drawn from a general campus population, using a campus-wide network of 476 access points spread over 161 buildings. Our study expands on those done by Tang and Baker, with a significantly larger and broader population.We found that residential traffic dominated all other traffic, particularly in residences populated by newer students; students are increasingly choosing a wireless laptop as their primary computer. Although web protocols were the single largest component of traffic volume, network backup and file sharing contributed an unexpectedly large amount to the traffic. Although there was some roaming within a network session, we were surprised by the number of situations in which cards roamed excessively, unable to settle on one access point. Cross-subnet roams were an especial problem, because they broke IP connections, indicating the need for solutions that avoid or accommodate such roams.
Abstract-Location is an important feature for many applications, and wireless networks can better serve their clients by anticipating client mobility. As a result, many location predictors have been proposed in the literature, though few have been evaluated with empirical evidence. This paper reports on the results of the first extensive empirical evaluation of location predictors, using a two-year trace of the mobility patterns of over 6,000 users on Dartmouth's campus-wide Wi-Fi wireless network.We implemented and compared the prediction accuracy of several location predictors drawn from two major families of domain-independent predictors, namely Markov-based and compression-based predictors. We found that low-order Markov predictors performed as well or better than the more complex and more space-consuming compression-based predictors. Predictors of both families fail to make a prediction when the recent context has not been previously seen. To overcome this drawback, we added a simple fallback feature to each predictor and found that it significantly enhanced its accuracy in exchange for modest effort. Thus the Order-2 Markov predictor with fallback was the best predictor we studied, obtaining a median accuracy of about 72% for users with long trace lengths. We also investigated a simplification of the Markov predictors, where the prediction is based not on the most frequently seen context in the past, but the most recent, resulting in significant space and computational savings. We found that Markov predictors with this recency semantics can rival the accuracy of standard Markov predictors in some cases. Finally, we considered several seemingly obvious enhancements, such as smarter tie-breaking and aging of context information, and discovered that they had little effect on accuracy. The paper ends with a discussion and suggestions for further work.
Background The Assistant to Lift your Level of activitY (Ally) app is a smartphone application that combines financial incentives with chatbot-guided interventions to encourage users to reach personalized daily step goals. Purpose To evaluate the effects of incentives, weekly planning, and daily self-monitoring prompts that were used as intervention components as part of the Ally app. Methods We conducted an 8 week optimization trial with n = 274 insurees of a health insurance company in Switzerland. At baseline, participants were randomized to different incentive conditions (cash incentives vs. charity incentives vs. no incentives). Over the course of the study, participants were randomized weekly to different planning conditions (action planning vs. coping planning vs. no planning) and daily to receiving or not receiving a self-monitoring prompt. Primary outcome was the achievement of personalized daily step goals. Results Study participants were more active and healthier than the general Swiss population. Daily cash incentives increased step-goal achievement by 8.1%, 95% confidence interval (CI): [2.1, 14.1] and, only in the no-incentive control group, action planning increased step-goal achievement by 5.8%, 95% CI: [1.2, 10.4]. Charity incentives, self-monitoring prompts, and coping planning did not affect physical activity. Engagement with planning interventions and self-monitoring prompts was low and 30% of participants stopped using the app over the course of the study. Conclusions Daily cash incentives increased physical activity in the short term. Planning interventions and self-monitoring prompts require revision before they can be included in future versions of the app. Selection effects and engagement can be important challenges for physical-activity apps. Clinical Trial Information This study was registered on ClinicalTrials.gov, NCT03384550.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.