Lossy compressors are increasingly adopted in scientific research, tackling volumes of data from experiments or parallel numerical simulations and facilitating data storage and movement. In contrast with the notion of entropy in lossless compression, no theoretical or data-based quantification of lossy compressibility exists for scientific data. Users rely on trial and error to assess lossy compression performance. As a strong data-driven effort toward quantifying lossy compressibility of scientific datasets, we provide a statistical framework to predict compression ratios of lossy compressors. Our method is a two-step framework where (i) compressor-agnostic predictors are computed and (ii) statistical prediction models relying on these predictors are trained on observed compression ratios. Proposed predictors exploit spatial correlations and notions of entropy and lossyness via the quantized entropy. We study 8+ compressors on 6 scientific datasets and achieve a median percentage prediction error less than 12%, which is substantially smaller than that of other methods while achieving at least a 8.8× speedup for searching for a specific compression ratio and 7.8× speedup for determining the best compressor out of a collection.
Lossy compression plays a growing role in scientific simulations where the cost of storing their output data can span terabytes. Using error bounded lossy compression reduces the amount of storage for each simulation; however, there is no known bound for the upper limit on lossy compressibility. Correlation structures in the data, choice of compressor and error bound are factors allowing larger compression ratios and improved quality metrics. Analyzing these three factors provides one direction towards quantifying lossy compressibility. As a first step, we explore statistical methods to characterize the correlation structures present in the data and their relationships, through functional models, to compression ratios. We observed a relationship between compression ratios and statistics summarizing correlation structure of the data, which are a first step towards evaluating the theoretical limits of lossy compressibility used to eventually predict compression performance and adapt compressors to correlation structures present in the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.