Malaria transmission is influenced by climate, land use and deliberate intervention. Recent declines have been observed in malaria transmission. Here, we show that the continent has witnessed a long-term recession in the prevalence of Plasmodium falciparum since 1900-29 (40%) to 2010-15 (24%), interrupted at different times by periods of rapidly increasing and decreasing transmission. The cycles and trend over the last 115 years are inconsistent with simplistic explanations in terms of climate or intervention alone. Previous global initiatives had minor impacts on malaria transmission, and a historically unprecedented decline has been observed since 2000. However, there has been little change to the continued high transmission belt covering large parts of West and Central Africa. Previous efforts to model the changing patterns of P. falciparum transmission intensity in Africa have been limited to the last 15 years1,2, or have used maps of historical expert opinion3. We provide quantitative data comprising 50,424 surveys at 36,966 geocoded locations to cover 115 years of malaria history in sub-Saharan Africa.
Background: Understanding the distribution of anopheline vectors of malaria is an important prelude to the design of national malaria control and elimination programmes. A single, geo-coded continental inventory of anophelines using all available published and unpublished data has not been undertaken since the 1960s. Methods: We have searched African, European and World Health Organization archives to identify unpublished reports on anopheline surveys in 48 sub-Saharan Africa countries. This search was supplemented by identification of reports that formed part of post-graduate theses, conference abstracts, regional insecticide resistance databases and more traditional bibliographic searches of peer-reviewed literature. Finally, a check was made against two recent repositories of dominant malaria vector species locations ( circa 2,500). Each report was used to extract information on the survey dates, village locations (geo-coded to provide a longitude and latitude), sampling methods, species identification methods and all anopheline species found present during the survey. Survey records were collapsed to a single site over time. Results: The search strategy took years and resulted in 13,331 unique, geo-coded survey locations of anopheline vector occurrence between 1898 and 2016. A total of 12,204 (92%) sites reported the presence of 10 dominant vector species/sibling species; 4,473 (37%) of these sites were sampled since 2005. 4,442 (33%) sites reported at least one of 13 possible secondary vector species; 1,107 (25%) of these sites were sampled since 2005. Distributions of dominant and secondary vectors conform to previous descriptions of the ecological ranges of these vectors. Conclusion: We have assembled the largest ever geo-coded database of anophelines in Africa, representing a legacy dataset for future updating and identification of knowledge gaps at national levels. The geo-coded database is available on Harvard Dataverse as a reference source for African national malaria control programmes planning their future control and elimination strategies.
BackgroundThe draft Global Technical Strategy for malaria aims to eliminate malaria from at least 10 countries by 2020. Yemen and Saudi Arabia remain the last two countries on the Arabian Peninsula yet to achieve elimination. Over the last 50 years, systematic efforts to control malaria in the Kingdom of Saudi Arabia has successfully reduced malaria cases to a point where malaria is now constrained largely to Jazan Province, the most south-western area along the Red Sea. The progress toward elimination in this province is reviewed between 2000 and 2014.MethodsData were obtained from the Ministry of Health case-reporting systems, activity reports, unpublished consultants reports, and relevant scientific published papers. Sub-provincial population data were obtained the national household censuses undertaken in 2004 and 2010. Rainfall data were obtained from the Meteorological Department in Jazan.ResultsBetween 2000 and 2014 there were 5522 locally acquired cases of malaria and 9936 cases of imported malaria. A significant reduction in locally acquired malaria cases was observed from 2000 to 2014, resulting in an average annual incidence (2010–2014) of 0.3 cases per 10,000 population. Conversely imported cases, since 2000, remain consistent and higher than locally acquired cases, averaging between 250 and 830 cases per year. The incidence of locally acquired cases is heterogeneous across the Province, with only a few health districts contributing the majority of the cases. The overall decline in malaria case incidence can be attributed to coincidental expansion of control efforts and periods of exceptionally low rainfall.ConclusionsJazan province is poised to achieve malaria elimination. There is a need to change from a policy of passive case detection to reactively and proactively detecting infectious reservoirs that require new approaches to surveillance. These should be combined with advanced epidemiological tools to improve the definitions of epidemiological receptive and hotspot malaria risk mapping. The single largest threat currently remains the risks posed by imported infections from Yemen.
BackgroundIn 2004, a revised action plan was developed, supported by the World Health Organization, to eliminate malaria from Saudi Arabia by preventing re-introduction of malaria into regions since declared malaria free, eliminating foci of transmission in the Mecca and Medina areas and a concerted effort of foci surveillance and control, to eliminate malaria from the regions of Jazan and Aseer. This paper provides the context, activities, progress, and possible contributions toward malaria elimination in the Aseer region since 2000, with a more detailed analysis of the spatial location of locally acquired case incidence since 2012.MethodsThis is a descriptive study of all available Ministry of Health surveillance data and process reports since 2000, with higher spatial resolution analysis of data between 2012 and 2015.ResultsIn 2000, there were 511 cases of Plasmodium falciparum locally acquired infection. The following 4 years witnessed a dramatic decline in cases to only 18 locally acquired infections reported in 2005. A resurgence in local infections was reported in 2006 (93) and 2007 (165), thereafter (2008–2014) local cases continued to decline to fewer than 40 per year across the region. However, in 2015, a small rise was noted (51). All locally acquired infections were P. falciparum. There has been a constant flow of imported infections into Aseer since 2000, mostly among immigrant labour from Pakistan, India, Sudan, and Yemen. Imported infections have included both Plasmodium vivax and P. falciparum. The spatial extent of malaria appears to be changing, but there remain two intractable areas Sarat Abeda and Dhran Aljanub, where risks per reporting centre have changed little since 2001, remaining above 0.5 per 10,000 population. Only seven villages contributed 55% of all locally acquired infection since 2012.DiscussionAseer has reached a state of very low incidence of locally acquired infections, despite a constant source of imported infections from outside the country. How many of the local infections are F2 generations from imported infections or how many are a result of residual active transmission between asymptomatic carriers of infections transmitted by pockets of existing Anopheles arabiensis populations remains unknown. A more detailed investigation of the spatial and temporal patterns of infected hosts, parasites and vectors would help define whether this region has managed to effectively prevent local transmission of new infections.
The distributions of the Afrotropical Anopheles mosquitoes were first summarized in 1938. In 2017, an extensive geo-coded inventory was published for 48 sub-Saharan African countries, including information such as sampling methods, collection dates, geographic co-ordinates and the literature consulted to produce the database. Using the information from the 2017 inventory, earlier distribution lists, museum collections and publications since 2016, this paper presents an updated, simplified list of Anopheles species by mainland countries and associated Afrotropical islands, with comments where applicable. It is intended as a supplement to the 2017 geo-coded inventory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.