The near-infrared (NIR) spectral region has been comparatively under-utilized for diverse materials and medical applications owing to the lack of chromophores that afford stability, solubility, synthetic malleability, and tunable photophysical features. Bacteriochlorins are attractive candidates in this regard; however, preparation via modification of naturally occurring bacteriochlorophylls or reduction of porphyrins or chlorins has proved cumbersome. To overcome such limitations, a dibromobacteriochlorin (BC-Br 3 Br 13 ) was prepared de novo by the acid-catalyzed condensation of an 8-bromodihydrodipyrrin-acetal. BC-Br 3 Br 13 bears (1) a geminal dimethyl group in each reduced ring to block adventitious dehydrogenation, and (2) bromo groups at the 3-and 13-positions for further chemical modifications. BC-Br 3 Br 13 was subjected to four types of Pd-mediated coupling reaction (Suzuki, Stille, Sonogashira, dehalogenation) to give bacteriochlorins bearing substituents at the 3-and 13-positions (phenyl, vinyl, acetyl, phenylethynyl), and a benchmark bacteriochlorin lacking such substituents. The 3,13divinylbacteriochlorin was transformed to the 3,13-diformylbacteriochlorin. Depending on the substituents at the 3-and 13-positions, the position of the long-wavelength absorption maximum (Q y (0,0) band) lies between 713 and 771 nm, the fluorescence emission maximum lies between 717 and 777 nm, and the fluorescence quantum yield ranges from 0.15 to 0.070. The ability to introduce a wide variety of functional groups via Pd-mediated coupling reactions and the tunable absorption and emission spectral properties suggest that synthetic bacteriochlorins are viable candidates for a wide variety of photochemical applications.
Bromo-substituted hydrodipyrrins are valuable precursors to synthetic bromo-chlorins and bromo-bacteriochlorins, which in turn are versatile substrates for derivatization in pursuit of diverse molecular designs. 8-bromo-2,3-dihydro-1-(1,1-dimethoxymethyl)-3,3-dimethyldipyrrin (1) is a crucial precursor in the rational synthesis of the bacteriochlorin building block 3,13-dibromo-8,8,18,18-tetramethylbacteriochlorin ( H2BC-Br3Br13) . 8-bromo-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin (2) is a crucial precursor in the rational synthesis of the analogous 3,13-disubstituted chlorin building block (e.g. H2C-Br3M10Br13 ). The routes to 1 and 2 share a common precursor, namely 4-bromo-2-(2-nitroethyl)-1-N-tosylpyrrole (6-Ts), which is derived from pyrrole-2-carboxaldehyde. The prior seven-step synthesis of 1 from pyrrole-2-carboxaldehyde has limited access to H2BC-Br3Br13 given the large excesses of materials, extensive reliance on column chromatography, and low overall yield (1.4%). Refined procedures for synthesis of the common precursor 6-Ts as well as 1 and 2 afford the advantages of (1) diminished consumption of solvents and reagents, (2) limited or no use of chlorinated solvents, (3) limited or no chromatography, and (4) improved yields of most steps. Streamlined procedures enable the final two or three transformations to be performed without purification of intermediates. The new procedures facilitate the expedient preparation of 1 and 2 at the multigram scale.
The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.