Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever‐increasing extents because of the appreciation for the role of landscape‐scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large‐scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage‐grouse (Centrocercus urophasianus, hereafter sage‐grouse) occur in western semi‐arid landscapes in North America. Range‐wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage‐grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high‐quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage‐grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage‐grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred areas with higher precipitation in the summer and avoided rugged terrain in the winter. Selection for sagebrush cover varied regionally with stronger selection in the Northeast region, likely because of limited availability, whereas avoidance of paved roads was fairly consistent across regions. We chose resource selection function (RSF) thresholds for each model set (seasonal × regional combination) that delineated important seasonal habitats for sage‐grouse. Each model set showed good validation and discriminatory capabilities within study‐site boundaries. We applied the nesting‐season models to a novel area not included in model development. The percentage of independent nest locations that fell directly within identified important habitat was not overly impressive in the novel area (49%); however, including a 500‐m buffer around important habitat captured 98% of independent nest locations within the novel area. We also used leks and associated peak male counts as a proxy for nesting habitat outside of the study sites used to develop the models. A 1.5...
Small random deviations from perfect bilateral symmetry define fluctuating asymmetry, and these deviations reflect an individual's inability to genetically control the development of a particular trait. Natural selection should act to minimize fluctuating asymmetry in traits that are most functionally important to an organism. Temperate-zone bats forage in flight and therefore symmetry of wing bones should be very important to fitness. Bats use their hind limbs only for hanging in roosts, therefore asymmetry in the main leg bone, the tibia, should not be as significant to a bat's fitness. We predicted that there would be less fluctuating asymmetry in the forearms than in the tibia. We measured the forearms and tibias of 119 little brown bats (Myotis lucifugus), and as predicted, forearm length did show less fluctuating asymmetry than tibia length. This result supports the hypothesis that traits can be ranked in order of functional importance according to the degree of fluctuating asymmetry found for each.
Interest in bison (Bison bison, B. bonasus) conservation and restoration continues to grow globally. In Canada, plains bison (B. b. bison) are threatened, occupying less than 0.5% of their former range. The largest threat to their recovery is the lack of habitat in which they are considered compatible with current land uses. Fences and direct management make range expansion by most bison impossible. Reintroduction of bison into previously occupied areas that remain suitable, therefore, is critical for bison recovery in North America. Banff National Park is recognized as historical range of plains bison and has been identified as a potential site for reintroduction of a wild population. To evaluate habitat quality and assess if there is sufficient habitat for a breeding population, we developed a Habitat Suitability Index (HSI) model for the proposed reintroduction and surrounding areas in Banff National Park (Banff). We then synthesize previous studies on habitat relationships, forage availability, bison energetics and snowfall scenarios to estimate nutritional carrying capacity. Considering constraints on nutritional carrying capacity, the most realistic scenario that we evaluated resulted in an estimated maximum bison density of 0.48 bison/km2. This corresponds to sufficient habitat to support at least 600 to 1000 plains bison, which could be one of the largest 10 plains bison populations in North America. Within Banff, there is spatial variation in predicted bison habitat suitability and population size that suggests one potential reintroduction site as the most likely to be successful from a habitat perspective. The successful reintroduction of bison into Banff would represent a significant global step towards conserving this iconic species, and our approach provides a useful template for evaluating potential habitat for other endangered species reintroductions into their former range.
Given climate change, species' climatically suitable habitats are increasingly expected to shift poleward. Some imperilled populations towards the poleward edge of their species' range might therefore conceivably benefit from climate change. Interactions between climate and population dynamics may be complex, however, with climate exerting effects both indirectly via influence over food availability and more directly, via effects on physiology and its implications for survival and reproduction. A thorough understanding of these interactions is critical for effective conservation management. We therefore examine the relationship between climate, survival and reproduction in Canadian black-tailed prairie dogs, a threatened keystone species in an imperilled ecosystem at the northern edge of the species' range. Our analyses considered 8 years of annual mark-recapture data (2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014) in relation to growing degree days, precipitation, drought status and winter severity, as well as year, sex, age and body mass. Survival was strongly influenced by the interaction of drought and body mass class, and winter temperature severity. Female reproductive status was associated with the interaction of growing degree days and growing season precipitation, with spring precipitation and with winter temperature severity. Results related to body mass suggested that climatic variables exerted their effects via regulation of food availability with potential linked effects of food quality, immunological and behavioural implications, and predation risk. Predictions of future increases in drought conditions in North America's grassland ecosystems have raised concerns for the outlook of Canadian black-tailed prairie dogs. Insights gained from the analyses, however, point to mitigating species management options targeted at decoupling the mechanisms by which climate exerts its negative influence. Our approach highlights the importance of understanding the interaction between climate and population dynamics in peripheralThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.