Superfluidity is an emergent quantum phenomenon which arises due to strong
interactions between elementary excitations in liquid helium. These excitations
have been probed with great success using techniques such as neutron and light
scattering. However measurements to-date have been limited, quite generally, to
average properties of bulk superfluid or the driven response far out of thermal
equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of
superfluid excitations in real-time. Furthermore, strong light-matter
interactions allow both laser cooling and amplification of the thermal motion.
This provides a new tool to understand and control the microscopic behaviour of
superfluids, including phonon-phonon interactions, quantised vortices and
two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless
transition. The third sound modes studied here also offer a pathway towards
quantum optomechanics with thin superfluid films, including femtogram effective
masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex
interactions, and self-assembly into complex geometries with sub-nanometre
feature size.Comment: 6 pages, 4 figures. Supplementary information attache
Here, we propose a solid-state quantum memory that does not require spectral holeburning, instead using strong rephasing pulses like traditional photon-echo techniques. The memory uses external broadening fields to reduce the optical depth and so switch off the collective atom-light interaction when desired. The proposed memory should allow operation with reasonable efficiency in a much broader range of material systems, for instance Er 3+ doped crystals which have a transition at 1.5 μm. We present analytic theory supported by numerical calculations and initial experiments.
We investigate the possibility of achieving the strong coupling regime of cavity quantum electrodynamics using rare earth ions as impurities in monolithic optical resonators. We conclude that due to the weak oscillator strengths of the rare earths, it may be possible but difficult, to reach the regime where the single photon Rabi frequency is large compared to both the cavity and atom decay rates. However reaching the regime where the saturation photon and atom numbers are less than one should be much more achievable. We show that in this 'bad cavity' regime, transfer of quantum states and an optical phase shift conditional on the state of the atom is still possible, and suggest a method for coherent detection of single dopants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.