REAKTHROUGHS IN BASIC BIO-medical sciences, including human genomics, stem cell biology, biomedical engineering, molecular biology, and immunology, over the past 5 decades have provided an unprecedented supply of information for improving human health. This revolutionary progress in basic science would not have happened without the public's long-term investment in and steadfast commitment to basic biomedical research. Translating the information gained through these basic discoveries into knowledge that will affect clinical practice and, ultimately, human health requires clinical research involving human subjects and human populations, as well as devel-opment of improved health services based on that research. This next scientific frontier deserves a correspond-
Thanatophoric dysplasia (TD), the most common neonatal lethal skeletal dysplasia, affects one out of 20,000 live births. Affected individuals display features similar to those seen in homozygous achondroplasia. Mutations causing achondroplasia are in FGFR3, suggesting that mutations in this gene may cause TD. A sporadic mutation causing a Lys650Glu change in the tyrosine kinase domain of FGFR3 was found in 16 of 16 individuals with one type of TD. Of 39 individuals with a second type of TD, 22 had a mutation causing an Arg248Cys change and one had a Ser371Cys substitution, both in the extracellular region of the protein. None of these mutations were found in 50 controls showing that mutations affecting different functional domains of FGFR3 cause different forms of this lethal disorder.
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are dominantly inherited chondrodysplasias characterized by short stature and early-onset osteoarthrosis. The disease genes in families with PSACH and MED have been localized to an 800 kilobase interval on the short arm of chromosome 19. Recently the gene for cartilage oligomeric matrix protein (COMP) was localized to chromosome 19p13.1. In three patients with these diseases, we identified COMP mutations in a region of the gene that encodes a Ca++ binding motif. Our data demonstrate that PSACH and some forms of MED are allelic and suggest an essential role for Ca++ binding in COMP structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.