The implementation of targeted therapies for acute myeloid leukemia has been challenged by complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here, we report initial findings from the Beat AML program on a cohort of 672 tumor specimens collected from 562 patients. We assessed these specimens using whole exome sequencing, RNA-sequencing, and ex vivo drug sensitivity analyses. Our data reveal Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
TCR downmodulation following ligation by MHC:peptide complexes is considered to be a pivotal event in T cell activation. Here, we analyzed the dynamics of TCR:CD3 cell surface expression on resting and antigen-activated T cells. We show that the TCR:CD3 complex is very stable and is rapidly internalized and recycled in resting T cells. Surprisingly, the internalization rate is not increased following TCR ligation by MHC:peptide complexes, despite significant TCR downmodulation, suggesting that constitutive internalization rather than ligation-induced downmodulation serves as the force that drives serial ligation. Furthermore, TCR downmodulation is mediated by the intracellular retention of ligated complexes and degradation by lysosomes and proteasomes. Thus, our data demonstrate that ligation induces TCR downmodulation by preventing recycling rather than inducing internalization.
The role of the T cell antigen receptor complex (TCR) in alphabeta/gammadelta lineage commitment remains controversial, in particular whether different TCR isoforms intrinsically favor adoption of a certain lineage. Here, we demonstrate that impairing the signaling capacity of a gammadeltaTCR complex enables it to efficiently direct thymocytes to the alphabeta lineage. In the presence of a ligand, a transgenic gammadeltaTCR mediates almost exclusive adoption of the gammadelta lineage, while in the absence of ligand, the same gammadeltaTCR promotes alphabeta lineage development with efficiency comparable to the pre-TCR. Importantly, attenuating gammadeltaTCR signaling through Lck deficiency causes reduced ERK1/2 activation and Egr expression and diverts thymocytes to the alphabeta lineage even in the presence of ligand. Conversely, ectopic Egr overexpression favors gammadelta T cell development. Our data support a model whereby gammadelta versus alphabeta lineage commitment is controlled by TCR signal strength, which depends critically on the ERK MAPK-Egr pathway.
Signals transduced by Notch receptors are indispensable for T cell specification and differentiation of alphabeta T lineage cells. However, the role of Notch signals during alphabeta versus gammadelta T lineage decision remains controversial. Here, we addressed this question by employing a clonal analysis of CD4(-)CD8(-) (DN) progenitor potential to position the divergence of alphabeta and gammadelta T cell lineages to the late DN2 to DN3 developmental stages. Accordingly, alphabeta and gammadelta precursor frequencies within these T cell progenitor subsets were determined, both in the presence and absence of Notch signaling through Delta-like 1. Notch signals were found to be critical for the DN to CD4(+)CD8(+) (DP) transition, irrespective of the identity (pTalphabeta or gammadelta) of the inducing T cell receptor complex, whereas gammadelta T cells developed from gammadeltaTCR-expressing T cell progenitors in the absence of further Notch ligand interaction. Collectively, our findings demonstrate a differential, stage-specific requirement for Notch receptor-ligand interactions in the differentiation of alphabeta and gammadelta T cells from T cell progenitors.
SUMMARY It is now established that Bcl11b specifies T cell fate. Here we show that in developing T-cells the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (Thymocyte Differentiation Factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how during developmental progression and tumor suppression non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.