The enzyme responsible for iodide salvage in the thyroid, iodotyrosine deiodinase, was solubilized from porcine thyroid microsomes by limited proteolysis with trypsin. The resulting protein retained deiodinase activity and was purified using anion exchange, dye, and hydrophobic chromatography successively. Peptide sequencing of the final isolate identified the gene responsible for the deiodinase. The amino acid sequence of the porcine enzyme is highly homologous to corresponding genes in a variety of mammals including humans, and the mouse gene was expressed in human embryonic kidney 293 cells to confirm its identity. The amino acid sequence of the deiodinase suggests the presence of three domains. The N-terminal domain provides a membrane anchor. The intermediate domain contains the highest sequence variability and lacks homology to structural motifs available in the common databases. The C-terminal domain is highly conserved and resembles bacterial enzymes of the NADH oxidase/flavin reductase superfamily. A three-dimensional model of the deiodinase based on the coordinates of the minor nitroreductase of Escherichia coli indicates that a Cys common to all of the mammal sequences is located adjacent to bound FMN. However, the deiodinase is not structurally related to other known flavoproteins containing redox-active cysteines or the iodothyronine deiodinases containing an active site selenocysteine.
High throughput screening of microbial DNA libraries was used to identify ␣-amylases with phenotypic characteristics compatible with large scale corn wet milling process conditions. Single and multiorganism DNA libraries originating from various environments were targeted for activity and sequence-based screening approaches. After initial screening, 15 clones were designated as primary hits based upon activity at pH 4.5 or 95°C without addition of endogenous Ca 2؉ . After further characterization, three enzyme candidates were chosen each with an exceptional expression of one or more aspects of the necessary phenotype: temperature stability, pH optimum, lowered reliance on Ca 2؉ and/or enzyme rate. To combine the best aspects of the three phenotypes to optimize process compatibility, the natural gene homologues were used as a parental sequence set for gene reassembly. Approximately 21,000 chimeric daughter sequences were generated and subsets screened using a process-specific, high throughput activity assay. Gene reassembly resulted in numerous improved mutants with combined optimal phenotypes of expression, temperature stability, and pH optimum. After biochemical and process-specific characterization of these gene products, one ␣-amylase with exceptional process compatibility and economics was identified. This paper describes the synergistic approach of combining environmental discovery and laboratory evolution for identification and optimization of industrially important biocatalysts.Endo-1,4-␣-D-glucan glucohydrolase (␣-amylase, 1 EC 3.2.1.1) is currently used in a broad array of industrial applications. These include starch hydrolysis for the production of ethanol and high fructose corn syrup, starch soil removal in laundry washing powders and dish-washing detergents, textile de-sizing, the production of modified starches, baking, hydrolysis of oil-field drilling fluids, and paper recycling. Since 1980, the most widely used enzyme for these applications has been the ␣-amylase isolated from the ubiquitous mesophilic soil bacterium Bacillus licheniformis (1-3). This enzyme operates optimally at 90°C and pH 6, and it requires addition of calcium (Ca 2ϩ ) for its thermostability (4), conditions that are substantially different from those encountered in the various industrial processes where the enzyme is utilized. The disparity between these industrial requirements and the native environment for the ␣-amylase results in sub-optimal enzymatic performance in many applications.Corn wet milling is an example of a multistep industrial process where there is considerable scope for enzyme performance improvement. Initially, whole corn kernels are fractionated into semi-purified streams of protein, fiber, oil, and starch. The resulting starch fraction has a pH of 4.5. The next process step involves liquefaction of the semi-purified starch to glucose oligomers by the B. licheniformis ␣-amylase, ideally at a pH of ϳ4.5 and a temperature of 105°C. However, because the enzyme is unstable under these conditions (5), the pH mu...
The enzymatic hydrolysis of mannan-based hemicelluloses is technologically important for applications ranging from pulp and paper processing to food processing to gas and oil well stimulation. In many cases, thermostability and activity at elevated temperatures can be advantageous. To this end, the genes encoding beta-mannosidase (man2) and beta-mannanase (man5) from the hyperthermophilic bacteria Thermotoga neapolitana 5068 and Thermotoga maritima were isolated, cloned, and expressed in Escherichia coli. The amino acid sequences for the mannosidases from these organisms were 77% identical and corresponded to proteins with an M(r) of approximately 92 kDa. The translated nucleotide sequences for the beta-mannanase genes (man5) encoded polypeptides with an M(r) of 76 kDa that exhibited 84% amino acid sequence identity. The recombinant versions of Man2 and Man5 had similar respective biochemical and biophysical properties, which were also comparable to those determined for the native versions of these enzymes in T. neapolitana. The optimal temperature and pH for the recombinant Man2 and Man5 from both organisms were approximately 90 degrees C and 7.0, respectively. The presence of Man2 and Man5 in these two Thermotoga species indicates that galactomannan is a potential growth substrate. This was supported by the fact that beta-mannanase and beta-mannosidase activities were significantly stimulated when T. neapolitana was grown on guar or carob galactomannan. Maximum cell densities increased by at least tenfold when either guar or carob galactomannan was added to the growth medium. For T. neapolitana grown on guar at 83 degrees C, Man5 was secreted into the culture media, whereas Man2 was intracellular. These localizations were consistent with the presence and lack of signal peptides for Man5 and Man2, respectively. The identification of the galactomannan-degrading enzymes in these Thermotoga species adds to the list of biotechnologically important hemicellulases produced by members of this hyperthermophilic genera.
The thermostability and proteolytic inactivation of rat liver submitochondrial particle transhydrogenase was studied in the presence of pyridine dinucleotide substrates and a variety of divalent metal and nucleotide inhibitors. Relative to the unliganded enzyme, the NADPH-enzyme complex was more thermostable and showed a twofold greater rate of tryptic inactivation, while the NADP+-enzyme complex was more thermolabile and only slightly more susceptible to tryptic inactivation. Neither NAD+ nor NADH significantly affected thermostability or proteolysis. Similar effects of these ligands were observed for the non-energy-linked and energy-linked transhydrogenase reactions, indicating that both activities are catalyzed by the same enzyme. In thermal experiments, acetyl-CoA, 2'-AMP, and NMNH stabilized, palmitoyl-CoAlabilized, and dephospho-CoA, CoA, NMN+, and 5'-AMP had little effect on enzyme stability. Tryptic inactivation was inhibited by 2'-AMP and NMN+ but was not influenced by the other nucleotide inhibitors. Divalent metal ion inhibitors (Mg2+, Ca2+, Mn2+, Ba2+, and Sr2+) stabilized transhydrogenase against thermal inactivation and promoted tryptic inactivation.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.