Fluorescence spectroscopy as an analytical tool for various applications as well as fluorescence probes showing a sensitive behavior towards their microenvironmental properties have experienced an increasing interest in research in the last decades. Recently our group has contributed to this field of interest by introducing a novel mechanism where a planarization in the excited state occurs leading to an advantageous allowed emission. Here, we provide an overview of intramolecular charge transfer states where a rotation in the excited state causes a high sensitivity for microenvironmental changes. Furthermore, effects which influence the surroundings of the fluorophores are described in detail. Recent results where twisted intramolecular charge transfer (TICT) and aggregation‐induced emission (AIE) effects were combined are described and a promising outlook for further research progress is provided.
MACBETH (Membranes and Catalysts beyond economical and technological hurdles) is a European funded project that aims at the implementation of a catalytic membrane reactor technology at TRL7 in four industrial relevant use cases. The paper gives the respective background, status quo and future perspective of that innovative technology that can be a corner stone to transfer current chemical processes into more sustainable ones.
We report new dirhamnolipid ester forming reverse wormlike micelles in nonpolar solvents without the addition of any primer. Therefore, these compounds represent a rare case of a binary system showing this gel-like behavior. In this study, the influence of the concentration of the rhamnolipid ester and the ester alkyl chain length on the rheological properties of the reverse wormlike micelles in toluene was investigated in detail. Highly viscoelastic solutions were obtained even at a relatively low concentration of less than 1 wt %. The phase transition temperatures indicate that the formation of reverse wormlike micelles is favored for dirhamnolipid esters with shorter alkyl chain lengths. Oscillatory shear measurements for the viscoelastic samples reveal that the storage modulus (G') and the loss modulus (G'') cross each other and fit the Maxwell model very well in the low-ω region. As is typical for wormlike micelle systems, the normalized Cole–Cole plot of G''/G'' max against G'/G'' max was obtained as a semicircle centered at G'/G'' max = 1. The formation of network structures was also verified by polarized light microscopy. The sample was birefringent at ambient temperature and anisotropic at an elevated temperature. Differential scanning calorimetry analysis yielded a transition enthalpy of about ΔH SG/GS = ±7.2 kJ/mol. This value corresponds to a strong dispersion energy and explains the formation of the highly viscous gels by the entanglement of wormlike micelles through the interaction of the alkyl chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.