The adsorption of sulfur dioxide (SO(2)) on iron oxide particle surfaces at 296 K has been investigated using X-ray photoelectron spectroscopy (XPS). A custom-designed XPS ultra-high vacuum chamber was coupled to an environmental reaction chamber so that the effects of adsorbed water and molecular oxygen on the reaction of SO(2) with iron oxide surfaces could be followed at atmospherically relevant pressures. In the absence of H(2)O and O(2), exposure of hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeOOH) to SO(2) resulted predominantly in the formation of adsorbed sulfite (SO(3)(2-)), although evidence for adsorbed sulfate (SO(4)(2-)) was also found. At saturation, the coverage of adsorbed sulfur species was the same on both alpha-Fe(2)O(3) and alpha-FeOOH as determined from the S2p : Fe2p ratio. Equivalent saturation coverages and product ratios of sulfite to sulfate were observed on these oxide surfaces in the presence of water vapor at pressures between 6 and 18 Torr, corresponding to 28 to 85% relative humidity (RH), suggesting that water had no effect on the adsorption of SO(2). In contrast, molecular oxygen substantially influenced the interactions of SO(2) with iron oxide surfaces, albeit to a much larger extent on alpha-Fe(2)O(3) relative to alpha-FeOOH. For alpha-Fe(2)O(3), adsorption of SO(2) in the presence of molecular oxygen resulted in the quantitative formation of SO(4)(2-) with no detectable SO(3)(2-). Furthermore, molecular oxygen significantly enhanced the extent of SO(2) uptake on alpha-Fe(2)O(3), as indicated by the greater than two-fold increase in the S2p : Fe2p ratio. Although SO(2) uptake is still enhanced on alpha-Fe(2)O(3) in the presence of molecular oxygen and water, the enhancement factor decreases with increasing RH. In the case of alpha-FeOOH, there is an increase in the amount of SO(4)(2-) in the presence of molecular oxygen, however, the predominant surface species remained SO(3)(2-) and there is no enhancement in SO(2) uptake as measured by the S2p : Fe2p ratio. A mechanism involving molecular oxygen activation on oxygen vacancy sites is proposed as a possible explanation for the non-photochemical oxidation of sulfur dioxide on iron oxide surfaces. The concentration of these sites depends on the exact environmental conditions of RH.
It has become increasingly clear that heterogeneous and multiphase chemistry of tropospheric aerosols can change the chemical balance of the atmosphere. In this review, we focus on recent laboratory studies of the heterogeneous and multiphase chemistry and photochemistry of mineral dust aerosol, a large mass fraction of the tropospheric aerosol. Mineral dust aerosol contains a mixture of oxides, clays, and carbonates. Molecular-based studies of reactions of these dust components provide insights into the chemistry of Earth's atmosphere. We discuss several different types of heterogeneous and multiphase reactions, including (a) ozone decomposition, (b) nitrogen dioxide and nitrate photochemistry, and (c) the dissolution and redox chemistry of Fe-containing dust. We also review some of the important chemical concepts that have recently emerged.
Processes that solubilize iron in mineral dust aerosol may increase the amount of iron supplied to ocean surface waters, and thereby stimulate phytoplankton productivity. In particular, the uptake of acids such as H2SO4 and HNO3 on mineral dust surfaces can produce extremely acidic environments that promote iron dissolution. Here, four samples that represent source materials for mineral dust (Saudi Beach sand (SB), Inland Saudi sand (IS), Saharan Sand (SS) and China Loess (CL)) and one commercial reference material (Arizona Test Dust (AZTD)) were characterized, and examined in dissolution studies in solutions of sulfuric, nitric and hydrochloric acid ranging from pH 1 to 3. Mössbauer spectroscopy revealed Fe(III) in all samples, whereas SB, CL and AZTD also contained appreciable Fe(II). Spectra suggest that both Fe(II) and Fe(III) were substituted into aluminosilicates, although CL, AZTD and IS also contained Fe(III) oxide phases. Total iron solubility measured after 24 h ranged between 4–16% of the initial iron content for each material, but did not scale with either the specific surface area or the total iron content of the samples. Instead, we show that Fe(II)‐containing solid phases such as Fe(II)‐substituted aluminosilicates represent a significant, and sometimes dominant, source of soluble Fe in acidic environments. Results of dissolution studies also show that the nature of the acid influences iron solubilization, as elevated concentrations of nitrate encountered from nitric acid at pH 1 suppressed Fe(II) formation. We propose a surface‐mediated, non‐photochemical redox reaction between nitrate and Fe(II), which may contribute to Fe(II)/Fe(III) cycling in the atmosphere.
The review examines literature relevant to environmental fate, transformation, and toxicity, and human exposure and health risks of neonicotinoid insecticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.