Big data as a paradigm focuses on data volume, velocity, and on the number and complexity of various data formats and metadata, a set of information that describes other data types. This is nowhere better seen than in the development of the software to support next generation astronomical instruments including the MeerKAT/KAT-7 Square Kilometre Array (SKA) precursor in South Africa, in the Low Frequency Array (LOFAR) in Europe, in two instruments led in part by the U.S. National Radio Astronomy Observatory (NRAO) with its Expanded Very Large Array (EVLA) in Socorro, NM, and Atacama Large Millimeter Array (ALMA) in Chile, and in other instruments such as the Large Synoptic Survey Telescope (LSST) to be built in northern Chile. This chapter highlights the big data challenges in constructing data management systems for these astronomical instruments, specifically the challenge of integrating legacy science codes, handling data movement and triage, building flexible science data portals and user interfaces, allowing for flexible technology deployment scenarios, and in automatically and rapidly mitigating the difference in science data formats and metadata models. The authors discuss these challenges and then suggest open source solutions to them based on software from the Apache Software Foundation including Apache Object-Oriented Data Technology (OODT), Tika, and Solr. The authors have leveraged these solutions to effectively and expeditiously build many precursor and operational software systems to handle data from these astronomical instruments and to prepare for the coming data deluge from those not constructed yet. Their solutions are not specific to the astronomical domain and they are already applicable to a number of science domains including Earth, planetary, and biomedicine.
Big data as a paradigm focuses on data volume, velocity, and on the number and complexity of various data formats and metadata, a set of information that describes other data types. This is nowhere better seen than in the development of the software to support next generation astronomical instruments including the MeerKAT/KAT-7 Square Kilometre Array (SKA) precursor in South Africa, in the Low Frequency Array (LOFAR) in Europe, in two instruments led in part by the U.S. National Radio Astronomy Observatory (NRAO) with its Expanded Very Large Array (EVLA) in Socorro, NM, and Atacama Large Millimeter Array (ALMA) in Chile, and in other instruments such as the Large Synoptic Survey Telescope (LSST) to be built in northern Chile. This chapter highlights the big data challenges in constructing data management systems for these astronomical instruments, specifically the challenge of integrating legacy science codes, handling data movement and triage, building flexible science data portals and user interfaces, allowing for flexible technology deployment scenarios, and in automatically and rapidly mitigating the difference in science data formats and metadata models. The authors discuss these challenges and then suggest open source solutions to them based on software from the Apache Software Foundation including Apache Object-Oriented Data Technology (OODT), Tika, and Solr. The authors have leveraged these solutions to effectively and expeditiously build many precursor and operational software systems to handle data from these astronomical instruments and to prepare for the coming data deluge from those not constructed yet. Their solutions are not specific to the astronomical domain and they are already applicable to a number of science domains including Earth, planetary, and biomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.