Dark matter is a vital component of the current best model of our universe, ΛCDM. There are leading candidates for what the dark matter could be (e.g. weaklyinteracting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm 2 , respectively -we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of Earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space. A large region of parameter space remains, most notably for nuclear-dense objects with masses in the range 55 − 10 17 g and 2 × 10 20 − 4 × 10 24 g, although the lower mass window is closed for Macros that destabilize ordinary matter.
The current standard model of cosmology, ΛCDM, requires dark matter to make up around 25% of the total energy budget of the Universe. Yet, quite puzzlingly, there appears to be no candidate particle in the current Standard Model of particle physics. Assuming the validity of the cold dark matter (CDM) paradigm, dark matter has evaded detection thus far either because it is intrinsically a weakly interacting substance or because its interactions are suppressed by its high constituent mass and low number density. Most approaches to explain dark matter to date assume the former and therefore require beyond-the-Standard-Model particles that have yet to be observed directly or indirectly. Given the dearth of evidence for this class of candidates it is timely to consider the latter possibility, which allows for candidates that may or may not arise from the Standard Model. In this work we extend a recent study of this general class of so-called macro dark matter -candidates with characteristic masses of grams and geometric cross sections of cm 2 . We consider new bounds that can be set using existing data from the resonant bar gravitational wave detectors NAUTILUS and EXPLORER.
Real physical systems are only understood, experimentally or theoretically, to a finite resolution so in their analysis there is generally an ignorance of possible short-range phenomena. It is also well-known that the boundary conditions of wavefunctions and fields can be used to model shortrange interactions when those interactions are expected, a priori. Here, a real-space approach is described wherein an artificial boundary of ignorance is imposed to explicitly exclude from analysis the region of a system wherein short-distance effects may be obscure. The (artificial) boundary conditions encode those short-distance effects by parameterizing the possible UV completions of the wavefunction. Since measurable quantities, such as spectra and cross sections, must be independent of the position of the artificial boundary, the boundary conditions must evolve with the radius of the boundary in a particular way. As examples of this approach, an analysis is performed of the non-relativistic free particle, harmonic oscillator, and Coulomb potential, and some known results for point-like (contact) interactions are recovered, however from a novel perspective. Generically, observables differ from their canonical values and symmetries are anomalously broken compared to those of idealized models. Connections are made to well-studied physical systems, such as the binding of light nuclei and cold atomic systems. This method is arguably more physically transparent and mathematically easier to use than other techniques that require the regularization and renormalization of delta-function potentials, and may offer further generalizations of practical use.
We construct the most general effective Lagrangian coupling gravity and electromagnetism up to mass dimension 6 by enumerating all possible non-minimal coupling terms respecting both diffeomorphism and gauge invariance. In all, there are only two unique terms after field re-definitions; one is known to arise from loop effects in QED while the other is a parity violating term which may be generated by weak interactions within the standard model of particle physics. We show that neither the cosmological propagation of light nor, contrary to earlier claims, solar system tests of General Relativity are useful probes of these terms. These non-minimal couplings of gravity and electromagnetism may remain a mystery for the foreseeable future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.