The ntd operon in Bacillus subtilis is essential for biosynthesis of 3,3'-neotrehalosadiamine (NTD), an unusual nonreducing disaccharide reported to have antibiotic properties. It has been proposed that the three enzymes encoded within this operon, NtdA, NtdB, and NtdC, constitute a complete set of enzymes required for NTD synthesis, although their functions have never been demonstrated in vitro. We now report that these enzymes catalyze the biosynthesis of kanosamine from glucose-6-phosphate: NtdC is a glucose-6-phosphate 3-dehydrogenase, NtdA is a pyridoxal phosphate-dependent 3-oxo-glucose-6-phosphate:glutamate aminotransferase, and NtdB is a kanosamine-6-phosphate phosphatase. None of these enzymatic reactions have been reported before. This pathway represents an alternate route to the previously reported pathway from Amycolatopsis mediterranei which derives kanosamine from UDP-glucose.
The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant.
NtdA is a putative sugar aminotransferase that is required for the synthesis of 3,3 0 -neotrehalosadiamine. The enzyme was purified to homogeneity by means of Ni 2+ -affinity chromatography and was crystallized using the microbatch method. X-ray diffraction data were collected from a single crystal to 2.3 Å resolution at the Canadian Light Source (CLS). The crystals belonged to space group P2 1 , with unit-cell parameters a = 50.3, b = 106.7, c = 96.7 Å , = 96.2 , and contained two molecules per asymmetric unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.