Taking advantage of both the high temporal and spatial resolution of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we studied a limb coronal shock wave and its associated extreme ultraviolet (EUV) wave that occurred on 2010 June 13. Our main findings are (1) the shock wave appeared clearly only in the channels centered at 193Å and 211Å as a dome-like enhancement propagating ahead of its associated semi-spherical CME bubble; (2) the density compression of the shock is 1.56 according to radio data and the temperature of the shock is around 2.8 MK;(3) the shock wave first appeared at 05:38 UT, 2 minutes after the associated flare has started and 1 minute after its associated CME bubble appeared; (4) the top of the dome-like shock wave set out from about 1.23 R ⊙ and the thickness of the shocked layer is ∼ 2×10 4 km; (5) the speed of the shock wave is consistent with a slight decrease from about 600 km s −1 to 550 km s −1 ; (6) the lateral expansion of the shock wave suggests a constant speed around 400 km s −1 , which varies at different heights and directions. Our findings support the view that the coronal shock wave is driven by the CME bubble, and the on-limb EUV wave is consistent with a fast wave or at least includes the fast wave component.
The severe geomagnetic effects of solar storms or coronal mass ejections (CMEs) are to a large degree determined by their propagation direction with respect to Earth. There is a lack of understanding of the processes that determine their non-radial propagation. Here we present a synthesis of data from seven different space missions of a fast CME, which originated in an active region near the disk centre and, hence, a significant geomagnetic impact was forecasted. However, the CME is demonstrated to be channelled during eruption into a direction +37±10° (longitude) away from its source region, leading only to minimal geomagnetic effects. In situ observations near Earth and Mars confirm the channelled CME motion, and are consistent with an ellipse shape of the CME-driven shock provided by the new Ellipse Evolution model, presented here. The results enhance our understanding of CME propagation and shape, which can help to improve space weather forecasts.
The kinematics of a globally propagating disturbance (also known as an ``EIT wave") is discussed using Extreme UltraViolet Imager (EUVI) data Solar Terrestrial Relations Observatory (STEREO). We show for the first time that an impulsively generated propagating disturbance has similar kinematics in all four EUVI passbands (304, 171, 195, and 284 A). In the 304 A passband the disturbance shows a velocity peak of 238+/-20 kms-1 within ~28 minutes of its launch, varying in acceleration from 76 ms-2 to -102 ms-2. This passband contains a strong contribution from a Si XI line (303.32 A) with a peak formation temperature of ~1.6 MK. The 304 A emission may therefore be coronal rather than chromospheric in origin. Comparable velocities and accelerations are found in the coronal 195 A passband, while lower values are found in the lower cadence 284 A passband. In the higher cadence 171 A passband the velocity varies significantly, peaking at 475+/-47 kms-1 within ~20 minutes of launch, with a variation in acceleration from 816 ms-2 to -413 ms-2. The high image cadence of the 171 A passband (2.5 minutes compared to 10 minutes for the similar temperature response 195 A passband) is found to have a major effect on the measured velocity and acceleration of the pulse, which increase by factors of ~2 and ~10, respectively. This implies that previously measured values (e.g., using EIT) may have been underestimated. We also note that the disturbance shows strong reflection from a coronal hole in both the 171 and 195 A passbands. The observations are consistent with an impulsively generated fast-mode magnetoacoustic wave.Comment: 4 pages 4 figure
Context. The heating of the solar corona by small heating events requires an increasing number of such events at progressively smaller scales, with the bulk of the heating occurring at scales that are currently unresolved. Aims. The goal of this work is to study the smallest brightening events observed in the extreme-UV quiet Sun. Methods. We used commissioning data taken by the Extreme Ultraviolet Imager (EUI) on board the recently launched Solar Orbiter mission. On 30 May 2020, the EUI was situated at 0.556 AU from the Sun. Its High Resolution EUV telescope (HRI EUV , 17.4 nm passband) reached an exceptionally high two-pixel spatial resolution of 400 km. The size and duration of small-scale structures was determined by the HRI EUV data, while their height was estimated from triangulation with simultaneous images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) mission. This is the first stereoscopy of small-scale brightenings at high resolution. Results. We observed small localised brightenings, also known as 'campfires', in a quiet Sun region with length scales between 400 km and 4000 km and durations between 10 sec and 200 sec. The smallest and weakest of these HRI EUV brightenings have not been previously observed. Simultaneous observations from the EUI High-resolution Lyman-α telescope (HRI Lya ) do not show localised brightening events, but the locations of the HRI EUV events clearly correspond to the chromospheric network. Comparisons with simultaneous AIA images shows that most events can also be identified in the 17.1 nm, 19.3 nm, 21.1 nm, and 30.4 nm pass-bands of AIA, although they appear weaker and blurred. Our differential emission measure (DEM) analysis indicated coronal temperatures peaking at log T ≈ 6.1 − 6.15. We determined the height for a few of these campfires to be between 1000 and 5000 km above the photosphere. Conclusions. We find that 'campfires' are mostly coronal in nature and rooted in the magnetic flux concentrations of the chromospheric network. We interpret these events as a new extension to the flare-microflare-nanoflare family. Given their low height, the EUI 'campfires' could stand as a new element of the fine structure of the transition region-low corona, that is, as apexes of small-scale loops that undergo internal heating all the way up to coronal temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.