Airway hyperresponsiveness to a variety of specific and nonspecific stimuli is a cardinal feature of asthma, which affects nearly 10% of the population in industrialized countries. Eosinophilic pulmonary inflammation, eosinophil-derived products, as well as Th2 cytokines IL-13, IL-4, and IL-5, have been associated with the development of airway hyperreactivity (AHR), but the specific immunological basis underlying the development of AHR remains controversial. Herein we show that mice with targeted deletion of IL-13 failed to develop allergen-induced AHR, despite the presence of vigorous Th2-biased, eosinophilic pulmonary inflammation. However, AHR was restored in IL-13−/− mice by the administration of recombinant IL-13. Moreover, adoptive transfer of OVA-specific Th2 cells generated from TCR-transgenic IL-13−/− mice failed to induce AHR in recipient SCID mice, although such IL-13−/− Th2 cells produced high levels of IL-4 and IL-5 and induced significant airway inflammation. These studies definitively demonstrate that IL-13 is necessary and sufficient for the induction of AHR and that eosinophilic airway inflammation in the absence of IL-13 is inadequate for the induction of AHR. Therefore, treatment of human asthma with antagonists of IL-13 may be very effective.
A recently discovered vesicular transport factor, termed p115, is required along with N-ethylmaleimidesensitive fusion protein (NSF) and soluble NSF attachment proteins for in vitro Golgi transport. p115 is a peripheral membrane protein found predominantly on the Golgi. Biochemical and electron microscopic analyses indicate that p115 is an elongated homodimer with two globular "heads" and an extended "tail" reminiscent of myosin II. We have cloned and sequenced cDNAs for bovine and rat p115. The predicted translation products are 90%o identical, and each can be divided into three domains. The predicted 108-kDa bovine protein consists of an N-terminal 73-kDa globular domain followed by a 29-kDa coiled-coil dimerization domain, a linker segment of 4 kDa, and a highly acidic domain of 3 kDa. p115 is related to Usolp, a protein required for endoplasmic reticulum to Golgi vesicular transport in Saccharomyces cerevisiae, which has a similar "headcoil-acid" domain structure. The p115 and Usolp heads are similar in size, have -25% sequence identity, and possess two highly homologous regions (62% and 60%o identity over 34 and 53 residues, respectively). There is a third region of homology (50%o identity over 28 residues) between the coiled-coil and acidic domains. Although the acidic nature of the p115 and Usolp C termini is conserved, the primary sequence is not. We discuss these results in light of the proposed function of p115 in membrane targeting and/or fusion.
Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre–driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell–polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair.
Intracellular protein traffic involves a tightly regulated series of events in which a membrane-bounded vesicles bud from one compartment and are specifically targeted to the next compartment, where they dock and fuse. A cell-free system that reconstitutes vesicle trafficking between the cis and medial Golgi cisternae has been used previously to identify several proteins involved in vesicular transport (N-ethylmaleimide-sensitive fusion protein, soluble N-ethylmaleimide-sensitive fusion protein attachment proteins, p115, and p16); however, these factors are insufficient to drive the transport reaction. We have used a modified version of this in vitro intra-Golgi transport assay to guide purification of a new transport-stimulating activity. The active component is a 13 S hetero-oligomeric complex consisting of at least five polypeptides (approximately 110, 109, 90, 82, and 71 kDa), which we term Golgi transport complex (GTC). Hydrodynamic properties suggest that GTC is approximately 800 kDa and nonglobular. We obtained peptide sequence information from the 90-kDa subunit (GTC-90) that allowed us to identify a number of GTC-90 cDNAs. Comparison of these cDNAs with one another and with the genomic sequence suggests that the GTC-90 mRNA is alternatively spliced. Anti-GTC-90 antibodies inhibit the in vitro Golgi transport assay, confirming the functionality of the purified complex. Subcellular fractionation indicates that GTC-90 exists in both membrane and cytosolic pools, with the cytosolic pool associated exclusively with the GTC complex. The membrane-associated pool of GTC-90 is localized to the Golgi apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.