Here we demonstrate the production of large quantities of gallium sulfide (GaS) nanosheets by liquid exfoliation of layered GaS powder. The exfoliation was achieved by sonication of the powder in suitable solvents. The variation of dispersed concentration with solvent was consistent with classical solution thermodynamics and showed successful solvents to be those with Hildebrand solubility parameters close to 21.5 MPa 1/2 . In this way, nanosheets could be produced at concentrations of up to ~0.2 mg/ml with lateral sizes and thicknesses of 50-1000 nm and 3-80 layers, respectively. The nanosheets appeared to be relatively defect free although oxygen was observed in the vicinity of the edges. Using controlled centrifugation techniques, it was possible to prepare dispersions containing size-selected nanosheets.Spectroscopic measurements showed the optical properties of the dispersions to vary strongly with nanosheet size, allowing the elucidation of spectroscopic metrics for in-situ estimation of nanosheet size and thickness. These techniques allow the production of nanosheets with controlled sizes which will be important for certain applications. To demonstrate this, we prepared films of GaS nanosheets of three different sizes for use as hydrogen evolution electrocatalysts. We found a clear correlation between performance and size showing small nanosheets to be more effective. This is consistent with the catalytically active sites residing on the nanosheet edges.
Here we demonstrate that the performance of catalytic electrodes, fabricated from liquid exfoliated MoS2 nanosheets, can be optimized by maximizing the electrode thickness coupled with the addition of carbon nanotubes. We find the current, and so the H2 generation rate, at a given potential to increase linearly with electrode thickness to up ∼5 μm after which saturation occurs. This linear increase is consistent with a simple model which allows a figure of merit to be extracted. The magnitude of this figure of merit implies that approximately two-thirds of the possible catalytically active edge sites in this MoS2 are inactive. We propose the saturation in current to be partly due to limitations associated with transporting charge through the resistive electrode to active sites. We resolve this by fabricating composite electrodes of MoS2 nanosheets mixed with carbon nanotubes. We find both the electrode conductivity and the catalytic current at a given potential to increase with nanotube content as described by percolation theory.
Here we demonstrate significant improvements in the performance of supercapacitor electrodes based on 2D MnO2 nano-platelets by the addition of carbon nanotubes. Electrodes based on MnO2 nano-platelets do not display high areal capacitance because the electrical properties of such films are poor, limiting the transport of charge between redox sites and the external circuit.In addition, the mechanical strength is low, limiting the achievable electrode thickness, even in the presence of binders. By adding carbon nanotubes to the MnO2-based electrodes, we have increased the conductivity by up to eight orders of magnitude, in line with percolation theory.The nanotube network facilitates charge transport, resulting in large increases in capacitance, especially at high rates, around 1 V/s. The increase in MnO2 specific capacitance scaled with nanotube content in a manner fully consistent with percolation theory. Importantly, the mechanical robustness was significantly enhanced, allowing the fabrication of electrodes that were 10 times thicker than could be achieved in MnO2-only films. This resulted in composite films with areal capacitances up to 40 times higher than could be achieved with MnO2-only electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.