Future electricity distribution grids will host a considerable share of variable renewable energy sources and local storage resources. Moreover, they will face new load structures due for example to the growth of the electric vehicle market. These trends raise the need for new paradigms for distribution grids operation, in which Distribution System Operators will increasingly rely on demand side flexibility and households will progressively become prosumers playing an active role on smart grid energy management. However, in present energy management architectures, the lack of coordination among actors limits the capability of the grid to enable the mentioned trends. In this paper we tackle this problem by proposing an architecture that enables households to autonomously exchange energy blocks and flexibility services with neighbors, operators and market actors. The solution is based on a blockchain transactive platform. We focus on a market application, where households can trade energy with their neighbors, aimed to locally balancing renewable energy production. We propose a market mechanism and dynamic transport prices that provide an incentive for households to locally manage energy resources in a way that responds to both prosumer and operator needs. We evaluate the impact of such markets through comprehensive simulations using power flow analysis and realistic load profiles, providing valuable insight for the design of appropriate mechanisms and incentives.
Future electricity distribution grids will host a considerable share of the renewable energy sources needed for enforcing the energy transition. Demand side management mechanisms play a key role in the integration of such renewable energy resources by exploiting the flexibility of elastic loads, generation or electricity storage technologies. In particular, local energy markets enable households to exchange energy with each other while increasing the amount of renewable energy that is consumed locally. Nevertheless, as most ex-ante mechanisms, local market schedules rely on hour-ahead forecasts whose accuracy may be low. In this paper we cope with forecast errors by proposing a game theory approach to model the interactions among prosumers and distribution system operators for the control of electricity flows in real-time. The presented game has an aggregative equilibrium which can be attained in a semi-distributed manner, driving prosumers towards a final exchange of energy with the grid that benefits both households and operators, favoring the enforcement of prosumers' local market commitments while respecting the constraints defined by the operator. The proposed mechanism requires only oneto-all broadcast of price signals, which do not depend either on the amount of players or their local objective function and constraints, making the approach highly scalable. Its impact on distribution grid quality of supply was evaluated through load flow analysis and realistic load profiles, demonstrating the capacity of the mechanism ensure that voltage deviation and thermal limit constraints are respected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.