No abstract
Although multi-agent reinforcement learning can tackle systems of strategically interacting entities, it currently fails in scalability and lacks rigorous convergence guarantees. Crucially, learning in multi-agent systems can become intractable due to the explosion in the size of the state-action space as the number of agents increases. In this paper, we propose a method for computing closed-loop optimal policies in multi-agent systems that scales independently of the number of agents. This allows us to show, for the first time, successful convergence to optimal behaviour in systems with an unbounded number of interacting adaptive learners. Studying the asymptotic regime of N-player stochastic games, we devise a learning protocol that is guaranteed to converge to equilibrium policies even when the number of agents is extremely large. Our method is model-free and completely decentralised so that each agent need only observe its local state information and its realised rewards. We validate these theoretical results by showing convergence to Nash-equilibrium policies in applications from economics and control theory with thousands of strategically interacting agents.
Similar to the role of Markov decision processes in reinforcement learning, Stochastic Games (SGs) lay the foundation for the study of multi-agent reinforcement learning (MARL) and sequential agent interactions. In this paper, we derive that computing an approximate Markov Perfect Equilibrium (MPE) in a finite-state discounted Stochastic Game within the exponential precision is PPADcomplete. We adopt a function with a polynomially bounded description in the strategy space to convert the MPE computation to a fixed-point problem, even though the stochastic game may demand an exponential number of pure strategies, in the number of states, for each agent. The completeness result follows the reduction of the fixed-point problem to END OF THE LINE. Our results indicate that finding an MPE in SGs is highly unlikely to be NP-hard unless NP=co-NP. Our work offers confidence for MARL research to study MPE computation on general-sum SGs and to develop fruitful algorithms as currently on zero-sum SGs.
Similar to the role of Markov decision processes in reinforcement learning, Markov games (also called stochastic games) lay down the foundation for the study of multi-agent reinforcement learning and sequential agent interactions. We introduce approximate Markov perfect equilibrium as a solution to the computational problem of finite-state stochastic games repeated in the infinite horizon and prove its PPAD-completeness. This solution concept preserves the Markov perfect property and opens up the possibility for the success of multi-agent reinforcement learning algorithms on static two-player games to be extended to multi-agent dynamic games, expanding the reign of the PPAD-complete class.
Although multi-agent reinforcement learning can tackle systems of strategically interacting entities, it currently fails in scalability and lacks rigorous convergence guarantees. Crucially, learning in multi-agent systems can become intractable due to the explosion in the size of the state-action space as the number of agents increases. In this paper, we propose a method for computing closed-loop optimal policies in multiagent systems that scales independently of the number of agents. This allows us to show, for the first time, successful convergence to optimal behaviour in systems with an unbounded number of interacting adaptive learners. Studying the asymptotic regime of N −player stochastic games, we devise a learning protocol that is guaranteed to converge to equilibrium policies even when the number of agents is extremely large. Our method is model-free and completely decentralised so that each agent need only observe its local state information and its realised rewards. We validate these theoretical results by showing convergence to Nashequilibrium policies in applications from economics and control theory with thousands of strategically interacting agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.