The potential ability of radiofrequency electromagnetic radiation (RFR) in the microwave range to induce mutagenesis, chromosomal aberrations, and sister chromatid exchanges in mammalian cells is being explored in our laboratories. In addition, we have also been examining the ability of simultaneous exposure to RFR and chemical mutagens to alter the genotoxic damage induced by chemical mutagens acting alone. We have performed experiments to determine whether there is an interaction between 2.45-GHz, pulsed-wave, RFR and proflavin, a DNA-intercalating drug. The endpoint studied was forward mutation at the thymidine kinase locus in L5178Y mouse leukemic cells. Any effect on the size distribution of the resulting colonies of mutated cells was also examined. The exposures were performed at net forward powers of 500 or 600 W, resulting in a specific absorption rate (SAR) of approximately 40 W/kg. The culture-medium temperature reached a 3 degrees C maximal increase during the 4-h exposure; appropriate 37 degrees C and convection-heating temperature controls (TC) were performed. In no case was there any indication of a statistically significant increase in the induced mutant frequency due to the simultaneous exposure to RFR and proflavin, as compared with the proflavin exposures alone. There was also no indication of any change in the colony-size distribution of the resulting mutant colonies, neither, and there was no evidence in these experiments of any mutagenic action by the RFR exposure alone.
A limited number of contradictory reports have appeared in the literature about the ability of radiofrequency (rf) radiation to induce chromosome aberrations in different biological systems. The technical documentation associated with such reports is often absent or deficient. In addition, no information is available as to whether any additional genotoxic hazard would result from a simultaneous exposure of mammalian cells to rf radiation and a chemical which (by itself) induces chromosome aberrations. In the work described, we have therefore tested two hypotheses. The first is that rf radiation by itself, at power densities and exposure conditions which are higher than is consistent with accepted safety guidelines, can induce chromosome aberrations in mammalian cells. The second is that, during a simultaneous exposure to a chemical known to be genotoxic, rf radiation can affect molecules, biochemical processes, or cellular organelles, and thus result in an increase or decrease in chromosome aberrations. Mitomycin C (MMC) and Adriamycin (ADR) were selected because they act by different mechanisms, and because they might put normal cells at risk during combined-modality rf radiation (hyperthermia)-chemotherapy treatment of cancer. The studies were performed with suitable 37 degrees C and equivalent convection heating-temperature controls in a manner designed to discriminate between any thermal and possible nonthermal action. Radiofrequency exposures were conducted for 2 h under conditions resulting in measurable heating (a maximum increase of 3.2 degrees C), with pulsed-wave rf radiation at a frequency of 2450 MHz and an average net forward power of 600 W, resulting in an SAR of 33.8 W/kg. Treatments with MMC or ADR were for a total of 2.5 h and encompassed the 2-h rf radiation exposure period. The CHO cells from each of the conditions were subsequently analyzed for chromosome aberrations. In cells exposed to rf radiation alone, and where a maximum temperature of approximately 40 degrees C was achieved in the tissue culture medium, no alteration in the frequency from 37 degrees C control levels was observed. Relative to the chemical treatment with MMC alone at 37 degrees C, for two different concentrations, no alteration was observed in the extent of chromosome aberrations induced by either simultaneous rf radiation exposure or convection heating to equivalent temperatures. At the ADR concentration that was used, most of the indices of chromosome aberrations which were scored indicated a similar result.(ABSTRACT TRUNCATED AT 400 WORDS)
Evidence in the literature from in vitro and in vivo studies as to whether or not radiofrequency radiation (RFR) in the microwave range is mutagenic is predominantly negative, with some positive reports. No evidence is available as to whether RFR will alter the mutagenic activity of genotoxic chemicals during a simultaneous exposure, a likely real-life situation. Two hypotheses have been proposed: a) that RFR by itself can cause mutations in a mammalian cell in vitro assay system; and b) that a simultaneous exposure to RFR during a chemical treatment of the cells with a known genotoxic agent, mitomycin C (MMC), will alter the extent of mutagenesis induced by the treatment of the cells by the chemical alone. These studies were performed using the forward mutation assay at the thymidine kinase locus in L5178Y mouse leukemic cells. The pulsed wave RFR was broadcast from an antenna horn at a frequency of 2.45 GHz. The power density was 48.8 mW/cm2 and the measured specific absorption rate (SAR) in this system was 30 W/kg (600 W forward power), which is well above current safety guidelines. The conclusions from five different experiments, employing three different concentrations of MMC, were that a) RFR exposure alone, at moderate power levels which resulted in a temperature increase in the cell culture medium of less than 3 degrees C, is not mutagenic; and b) when cells are simultaneously treated with MMC and RFR at these same moderate power levels, the RFR does not affect either the inhibition of cell growth or the extent of mutagenesis resulting from the treatment with the chemical MMC alone.
The effect of continuous-wave (CW) and pulsed-wave (PW) radiofrequency radiation (RFR) in the microwave range on UV-induced DNA repair has been investigated in MRC-5 normal human diploid fibroblasts. RFR exposure at power densities of 1 (or 5) and 10 mW/cm2 gave a maximum specific absorption rate (SAR) (at 10 mW/cm2) of 0.39 +/- 0.15 W/kg for 350 MHz RFR, 4.5 +/- 3.0 W/kg for 850 MHz RFR, and 2.7 +/- 1.6 W/kg for 1.2 GHz RFR. RFR exposures for 1 to 3 h at 37 degrees C, in either continuous-wave or pulsed-wave modes, had no effect on the rate of repair replication label incorporated into preexisting UV-damaged DNA. RFR exposures (PW), with a constant medium temperature of 39 degrees C at 350 and 850 MHz during the repair period after UV damage, also had no effect. Assay for induction of repair synthesis by RFR exposure alone in non-UV irradiated cells was negative for the 350-, 850-, and 1200-MHz CW and PW RFR at 37 degrees C and the 350- and 850-MHz PW RFR at 39 degrees C. RFR does not induce DNA repair under these exposure conditions. In preliminary experiments--with the tissue culture medium maintained at 39 degrees C and RFR exposures (PW) at the frequencies of 350, 850, and 1200 MHz--no effect on incorporation of [3H]thymidine into DNA undergoing semiconservative synthesis was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.