When mining vehicle operators take risks, there is a increased probability of an accident that can cause injuries, fatalities and large financial costs to the mine operators. It can be assumed that the operators do not intentially take unnecessarily high risk, and that the risks are hidden due to factors such as adverse weather, fatigue, visual obstructions, boredom, etc. This paper examines the potential of measuring the risk of danger in a situation by using the safe rules of operation defined by mining safety management.The problem with measuring safety is that the safe rules of operation are heavily dependent on the context of the situation. What is considered normal practice and safe in one part of the mine (such as performing a u-turn in a parking lot) is not safe on a haul road. To be able to measure safety, it is therefore necessary to understand the different context areas in a mine so that feedback of unsafe behaviour presented to the operator is relevant to the context of the situation. This paper presents a novel method for generating context area information using the vehicle trajectory information collected from vehicles in the mine. Results are presented using real-life data collected from several operating fleets of mining vehicles.
Abstract-When mining vehicle operators take risks, there is a increased probability of an accident that can cause injuries, fatalities and large financial costs to the mine operators. It can be assumed that the operators do not intentially take unnecessarily high risk, and that the risks are hidden due to factors such as adverse weather, fatigue, visual obstructions, boredom, etc. This paper examines the potential of measuring the risk of danger in a multi-agent situation by using the safe rules of operation defined by mining safety management.The problem with measuring safety is that the safe rules of operation are heavily dependent on the context of the situation. What is considered normal practice and safe in one part of the mine (such as performing a u-turn in a parking lot) is not safe on a haul road. To be able to measure safety, it is therefore necessary to understand the different context areas in a mine so that feedback of unsafe behaviour presented to the operator is relevant to the context of the situation. This paper presents a novel method for generating context area information using the vehicle trajectory information collected from a group of vehicles interacting in an area. Results are presented using real-life data collected from several operating fleets of mining vehicles. The algorithms presented have potential application to a large variety of environments including Intelligent Transportation Systems (ITS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.